首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   469篇
  免费   85篇
  国内免费   223篇
测绘学   3篇
大气科学   3篇
地球物理   56篇
地质学   659篇
海洋学   13篇
天文学   8篇
综合类   13篇
自然地理   22篇
  2024年   2篇
  2023年   8篇
  2022年   16篇
  2021年   21篇
  2020年   17篇
  2019年   16篇
  2018年   15篇
  2017年   25篇
  2016年   20篇
  2015年   17篇
  2014年   36篇
  2013年   44篇
  2012年   36篇
  2011年   22篇
  2010年   21篇
  2009年   32篇
  2008年   31篇
  2007年   27篇
  2006年   51篇
  2005年   22篇
  2004年   32篇
  2003年   19篇
  2002年   27篇
  2001年   21篇
  2000年   22篇
  1999年   23篇
  1998年   25篇
  1997年   16篇
  1996年   22篇
  1995年   20篇
  1994年   12篇
  1993年   18篇
  1992年   8篇
  1991年   7篇
  1990年   5篇
  1989年   6篇
  1988年   7篇
  1987年   5篇
  1985年   2篇
  1977年   1篇
排序方式: 共有777条查询结果,搜索用时 15 毫秒
111.
A.S. Gaab  M. Jank  U. Poller  W. Todt 《Lithos》2006,87(3-4):261-275
Magmatic protoliths of Ordovician age have been identified in the metamorphic rocks of the Muráñ Gneiss Complex, Veporic Unit (Central Western Carpathians). Vapor digestion single zircon U–Pb dating yields an intrusion age of 464 ± 35 Ma (upper intercept) for the granite protolith. A lower intercept age of 88 ± 40 Ma records amphibolite-facies metamorphic overprint in the Cretaceous, during the Alpine orogeny. Geochemical and isotopic data suggest crustal origin of the orthogneiss. Ndinitial are between − 2.6 and − 5.0 and TDMNd between 1.3 and 1.5 Ga (two-step approach). 87Sr / 86Srinitial ratios vary between 0.7247 and 0.7120, and a steep REE pattern further constrains the crustal affinity of these rocks. Associated amphibolite bodies have Ndinitial values of 6.5, 87Sr / 86Srinitial ratio of 0.7017, and a flat REE pattern. They are interpreted as MORB derived metabasites. Whole-rock Pb isotope analyses define a linear array in a 206Pb / 204Pb vs. 207Pb / 204Pb diagram with an age of ca. 134 Ma, consistent with intense Alpine metamorphism and deformation.

These basement rocks of the Central Western Carpathians are interpreted as Ordovician magmatic rocks intruded at an active margin of Gondwana. They represent the eastern prolongation of Cambro–Ordovician units of the European Variscides, which were part of the peri-Gondwana superterrane and accreted to Laurussia during the Variscan orogeny. Variscan metamorphic overprint is not recorded by the isotopic data of the Muráñ Gneiss Complex. Alpine metamorphism is the most dominant overprint.  相似文献   

112.
论祁雨沟式金矿   总被引:4,自引:0,他引:4  
陈衍景  崔毫 《矿产与地质》1992,6(2):103-110
祁雨沟金矿是典型的爆破角砾岩型金矿。系统地论述了其成矿地质背景、矿床地质、地球化学特征、及其成因意义。根据围岩蚀变和矿物包裹体温度、成分的研究,确定了矿床形成的物理化学条件及其各阶段的演变;通过氧同位素研究证明了成矿溶液的来源由早期岩浆水转变为晚期大气降水;用硫、碳和铅同位素组成说明成矿物质的复杂来源。以板块构造理论为指导,建立了矿床的形成模式,并指出找矿方向。  相似文献   
113.
ABSTRACT Thermobarometric studies on various granulite facies areas along the Prydz Bay coast, East Antarctica (73°-79°E, 68°-70°S), show that, at around 1100 Ma, during a late Proterozoic orogeny, the rocks of the Larsemann Hills suffered a lower pressure metamorphic peak than the surrounding areas. Along the Prydz Bay coast, the rocks affected by this event include parts of the Vestfold Hills block plus all of the Rauer Group, the Larsemann Hills and the Munro Kerr Mountains. The dykes in the south-west corner of the Vestfold Hills were recrystallized during this event with little deformation at temperatures not quite as high as in the areas further south-west (650°C, 6.5 kbar) (Collerson et al., 1983), the Rauer Group was metamorphosed at 800°C and 7.5 kbar (Harley, 1987a), the Larsemann Hills at 750°C and 4.5 kbar, and the Munro Kerr Mountains probably at around 850°C and 5 kbar. Retrograde equilibration in the different areas occurred during decompression to about 10 km depth in all areas, followed by isobaric cooling at this depth. This paper shows that the peak metamorphism in the Larsemann Hills occurred at a pressure which is too low to have been the consequence of thermal relaxation of overthickened crust with normal mantle heat flow. Although other areas in Prydz Bay were metamorphosed at sufficiently high pressures so that their decompression paths are not inconsistent with a continental collision model, the inferred pre-metamorphic peak histories and the requirement of consistency with the Larsemann Hills, make it unlikely that collision followed by erosion-driven decompression is an appropriate model. We suggest that the thermal regime of the crust in the Larsemann Hills region was controlled by a perturbation in the asthenosphere, with magma invasion of the crust. We suggest that the 500 Ma event, represented in Prydz Bay by granitic outcrops at Landing Bluff and by several K/Ar ages from the Larsemann Hills area, was responsible for the final excavation of the terrane.  相似文献   
114.
大陆地质与大陆构造和大陆动力学   总被引:10,自引:1,他引:10       下载免费PDF全文
当代地球科学发展的新需求与板块构造对大陆地质的深化研究,使大陆问题成为21世纪地学发展的前沿研究领域、热点和关键。文中在提出“大陆动力学”研究20多年后的今天,进行关于大陆研究的新思考,从讨论厘定大陆研究的有关争议概念、大陆的基本问题、中国大陆构造的典型实例以及与世界同类范例的简要对比出发,综合概括了大陆地质与大陆构造和大陆动力学研究的关键科学问题与进一步探索研究的思考课题。提出了在大陆研究中,在进一步精确深化板块构造对大陆的研究的同时,应突出加强大陆构造中有无非板块构造动力及其远程效应的大陆内的、在深部动力学与陆块间差异非均衡背景下由陆内陆块间相互作用导致的真正陆内构造及其动力学问题的研究,以便为深化发展板块构造、认知大陆、探索大陆动力学、构建包括板块构造在内新的行星地球构造观作出努力与探索。  相似文献   
115.
Distribution of the Neogene calc-alkaline magmatism of the Carpathian arc is directly related in space and time to the kinematics of the two major terranes of the Intracarpathian area (Alcapa, Tisia-Getia) along the south-eastern border of the European plate. In the West Carpathians and adjacent areas, the volcanic activity occurred between 20–11 Ma, with large volumes of both acidic and intermediate rocks, generally distributed randomly, sometimes transversally to the orogenic belt and as rare small occurrences along the Flysch belt. In the East Carpathians, the volcanic rocks are distributed along the northern margin of the Zemplin block, the north–easternmost part of the Alcapa and eastward along the front of the Getic block, at the contact with European plate. Between Tokaj-Slanské-Vihorlat up to northern Cãlimani Mountains, the magmatism occurred between 14–9 Ma, and along the Cãlimani-Harghita chain between 9–0.2 Ma. The calc-alkaline magmatic rocks of the Apuseni Mountains are located in the interior of the Tisia block and occurred between 14–9 Ma. The generation of the calc-alkaline magmatism is considered here as the result of complex interplay between plate roll-back and lithospheric detachment tectonic processes and the break-off of the subducted plate, mostly in a post-collisional setting. (1) The magmatites of the Western Carpathians and the Pannonian basin were generated in direct relation to subduction roll-back processes, over the downgoing slab, during the period of lateral extrusion and back-arc extension. In this area, characterized by maximum crustal shortening, we can infer further delamination processes to explain the generation of magmas. (2) The magmatic rocks from the northern sector of the East Carpathians (Tokaj-Slanské-Vihorlat up to the Northern Cãlimani Mountains), resulted after subduction roll-back processes and an almost simultaneous break-off of the descending plate all along the arc segment during main clockwise rotation of the Intracarpathian terranes. (3) In the eastern sector of the East Carpathians (Cãlimani up to Harghita Mountains), the magmatic rocks were generated through partial melting of the subducted slab followed by gradual break-off of the subducted plate along strike (north to south). (4) The Apuseni Mts. magmatic activity resulted in transtensional tectonic regime by decompressional melting of lithospheric mantle, during the translation and rotation of Tisia-Getia block.  相似文献   
116.
Tectonic evolution of the Cape and Karoo basins of South Africa   总被引:1,自引:0,他引:1  
The Cape and Karoo basins formed within the continental interior of Gondwana. Subsidence resulted from the vertical motion of rigid basement blocks and intervening crustal faults. Each basin episode records a three-stage evolution consisting of crustal uplift, fault-controlled subsidence, and long periods of regional subsidence largely unaccompanied by faulting or erosional truncation. The large-scale episodes of subsidence were probably the result of lithospheric deflection due to subduction-driven mantle flow. The early Paleozoic Cape basin records the combined effects of a north-dipping intra-crustal décollement (a late Neoproterozoic suture) and a right-stepping offset between thick Rio de la Plata craton and Namaqua basement. Following the Saldanian orogeny, a suite of small rift basins and their post-rift drape formed at this releasing stepover. Great thicknesses of quartz sandstone (Ordovician–Silurian) and mudstone (Devonian) accumulation are attributed to subsidence by rheological weakening and mantle flow. In contrast, the Karoo basin is a cratonic cover that mimics the underlying basement blocks. The Permian Ecca and lower Beaufort groups were deposited in a southward-deepening ramp syncline by extensional decoupling on the intra-crustal décollement. Reflection seismic and deep-burial diagenetic studies indicate that the Cape orogeny started in the Early Triassic. Deformation was partitioned into basement-involved strike-slip faults and thin-skinned thrusting. Uplift of the Namaqua basement resulted in erosion of the Beaufort cover. East of the Cape fold belt, contemporaneous subsidence and tilting of the Natal basement created a late Karoo transtensional foreland basin, the Stormberg depocentre. Early Jurassic tectonic resetting and continental flood basalts terminated the Karoo basin.  相似文献   
117.
Significantly different peak pressure–temperature (P–T) conditions (18–26 kbar and 630–760°C versus 29–37 kbar and 750–940°C) have previously been published for eclogite and related metabasites from the south-eastern flank of the Pohorje Mountains in Slovenia. These rocks can show a bimodal distribution of chromium in the rock-forming minerals, particularly garnet, the role of which in their metamorphic evolution is unclear. Therefore, we studied an eclogite and a related rock with clinopyroxene containing only 17 mol% jadeite + acmite (sample 18Ca35a). KαCr intensity maps of garnet particularly in sample 18Ca35a show a sharp irregular boundary between the core (Gt1) and the mantle (Gt2). Gt1 of millimetre-sized garnet in this rock is nearly Cr-free and unzoned, whereas Gt2 is of different composition (0.22 wt.% Cr2O3) and slightly zoned. Nearly Cr-free amphibole, (clino)zoisite, kyanite and staurolite inclusions are present in Gt1. The matrix consists of garnet and Cr-bearing clinopyroxene, (clino)zoisite and amphibole. Thermodynamic modelling suggests peak P–T conditions of 22.5 ± 2 kbar at 710 ± 25°C (Gt1) and 23 ± 2 kbar at 700 ± 25°C (Gt2) in both samples. We interpret these findings to suggest that olivine- and hornblende-bearing gabbros with some chromite experienced early metamorphism in the eclogite facies, when Gt1 formed. The rock was subsequently exhumed and cooled leading to significant garnet corrosion. A second stage of metamorphism, recognized by mappable Cr contents in garnet, led to the growth of Gt2 and other Cr-bearing minerals at the expense of chromite relics, which survived stage I. The peak P–T conditions of stage II are compatible with those previously derived by same authors and support the view that probably no ultrahigh-pressure eclogite exists in the Pohorje Mountains. We relate the two metamorphic events to the Cretaceous and Palaeogene high-pressure events recently reported from micaschists of the Pohorje Mountains.  相似文献   
118.
鄂尔多斯地块构造演化的古地磁学研究   总被引:15,自引:0,他引:15       下载免费PDF全文
鄂尔多斯地块与中朝地台其它地区相同时代地层的古地磁结果基本一致表明:晚二叠世以来,中朝地台经历了从低纬度(19°左右)向中纬度的北移过程,并伴有50°左右的逆时针旋转;晚二叠世—中三叠世地台北移10°(1000km)左右,而方位基本未变;中三叠世—中侏罗世主要发生50°左右的逆时针旋转,而北向位移不明显,这一旋转可能与杨子地台和中朝地台碰撞拼合有关,或者说是印支运动在该地区的反应,中侏罗世—早白垩世地块已基本和现代位置一致  相似文献   
119.
The TRANSALP consortium, comprising institutions from Italy, Austria and Germany, carried out deep seismic reflection measurements in the Eastern Alps between Munich and Venice in 1998, 1999 and 2001. In order to complement each other in resolution and depth range, the Vibroseis technique was combined with simultaneous explosive source measurements. Additionally, passive cross-line recording provided three-dimensional control and alternative north–south sections. Profits were obtained by the combination of the three methods in sectors or depths where one method alone was less successful.The TRANSALP sections clearly image a thin-skinned wedge of tectonic nappes at the northern Alpine front zone, unexpected graben or half-graben structures within the European basement, and, thick-skinned back-thrusting in the southern frontal zone beneath the Dolomite Mountains. A bi-vergent structure at crustal scale is directed from the Alpine axis to the external parts. The Tauern Window obviously forms the hanging wall ramp anticline above a southward dipping, deep reaching reflection pattern interpreted as a tectonic ramp along which the Penninic units of the Tauern Window have been up-thrusted.The upper crystalline crust appears generally transparent. The lower crust in the European domain is characterized by a 6–7 km thick laminated structure. On the Adriatic side the lower crust displays a much thicker or twofold reflective pattern. The crustal root at about 55 km depth is shifted around 50 km to the south with respect to the main Alpine crest.  相似文献   
120.
Abstract Edenite/tremolite and edenite/magnesio-hornblende in equilibrium with plagioclase, chlorite, epidote, quartz and vapour involve several types of reactions for which K D can be related to T and P. Thermodynamic calculation of these equilibria leads to isopleth systems. Given knowledge of the progressive changes of end-member activities in zoned Ca–Mg amphiboles (based on microprobe analyses), it is possible to construct precise pressure–temperature–time paths ( P–T–t paths) which have been followed by metabasites during polyphase metamorphism. When applied to basic rocks from the River Vilaine area, this method allows us to construct a P–T–t path that can be compared directly to the P–T–t path constructed from interbedded acid rocks (aluminous micaschists) in the same structural unit. Through time, both basic and acid rocks underwent the same complex deformation history that can be described conveniently in the L–S fabric system of Flinn. This allows us to construct a P–T–t deformation path for this structural unit.
These paths are interpreted in terms of an under/overthrusting continental collision belt (the Hercynian belt), and represent an illustration of the time delay caused by stacking of more than two crustal units.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号