首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18篇
  免费   1篇
  国内免费   5篇
地球物理   1篇
地质学   22篇
综合类   1篇
  2021年   1篇
  2013年   1篇
  2009年   2篇
  2008年   2篇
  2004年   1篇
  2003年   5篇
  2002年   2篇
  2001年   1篇
  2000年   3篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1994年   1篇
  1993年   1篇
  1991年   1篇
排序方式: 共有24条查询结果,搜索用时 187 毫秒
11.
大别山超高压榴辉岩带榴辉岩的特征和变质作用   总被引:17,自引:2,他引:17  
张勇  江来利 《岩石学报》1991,7(3):1-13,T002
大别山超高压柯石英榴辉岩带中多处产出含柯石英榴辉岩,岩石中广泛分布柯石英假象。它们产在片麻岩和大理岩中,并有不同的特征矿物组合。与鄂北等地高压型榴辉岩比较,超高压(柯石英)榴辉岩的绿辉石富硬玉组分,而石榴石为一般的富铁铝榴石贫镁铝榴石的石榴石。钙质角闪石和钠钙质冻蓝闪石是超高压(柯石英)榴辉岩中主要的次生角闪石类型。榴辉岩的原岩是陆内拉张过程中形成的广义拉斑玄武岩,它们在中朝一扬子大陆板块汇聚造山的俯冲大地构造背景中,发生渐进变质。变质时地热增温率极低。造山运动后期,榴辉岩随构造运动抬升又经历两阶段迭加变质。  相似文献   
12.
Chris D. Parkinson   《Lithos》2000,52(1-4):215-233
Coarse-grained whiteschist, containing the assemblage: garnet+kyanite+phengite+talc+quartz/coesite, is an abundant constituent of the ultrahigh-pressure metamorphic (UHPM) belt in the Kulet region of the Kokchetav massif of Kazakhstan.

Garnet displays prograde compositional zonation, with decreasing spessartine and increasing pyrope components, from core to rim. Cores were recrystallized at T=380°C (inner) to 580°C (outer) at P<10 kbar (garnet–ilmenite geothermometry, margarite+quartz stability), and mantles at T=720–760°C and PH20=34–36 kbar (coesite+graphite stability, phengite geobarometer, KFMASH system reaction equilibria). Textural evidence indicates that rims grew during decompression and cooling, within the Qtz-stability field.

Silica inclusions (quartz and/or coesite) of various textural types within garnets display a systematic zonal distribution. Cores contain abundant inclusions of euhedral quartz (type 1 inclusions). Inner mantle regions contain inclusions of polycrystalline quartz pseudomorphs after coesite (type 2), with minute dusty micro-inclusions of chlorite, and more rarely, talc and kyanite in their cores; intense radial and concentric fractures are well developed in the garnet. Intermediate mantle regions contain bimineralic inclusions with coesite cores and palisade quartz rims (type 3), which are also surrounded by radial fractures. Subhedral inclusions of pure coesite without quartz overgrowths or radial fractures (type 4) occur in the outer part of the mantle. Garnet rims are silica-inclusion-free.

Type 1 inclusions in garnet cores represent the low-P, low-T precursor stage to UHPM recrystallization, and attest to the persistence of low-P assemblages in the coesite-stability field. Coesites in inclusion types 2, 3, and 4 are interpreted to have sequentially crystallized by net transfer reaction (kyanite+talc=garnet+coesite+H2O), and were sequestered within the garnet with progressively decreasing amounts of intragranular aqueous fluid.

During the retrograde evolution of the rock, all three inclusion types diverged from the host garnet PT path at the coesite–quartz equilibrium, and followed a trajectory parallel to the equilibrium boundary resulting in inclusion overpressure. Coesite in type 2 inclusions suffered rapid intragranular H2O-catalysed transformation to quartz, and ruptured the host garnet at about 600°C (when inclusion P27 kbar, garnet host P9 kbar). Instantaneous decompression to the host garnet PT path, passed through the kyanite+talc=chlorite+quartz reaction equilibrium, resulting in the dusty micro-assemblage in inclusion cores. Type 3 inclusions suffered a lower volumetric proportion transformation to quartz at the coesite–quartz equilibrium, and finally underwent rupture and decompression when T<400°C, facilitating coesite preservation. Type 4 coesite inclusions are interpreted to have suffered minimal transformation to quartz and proceeded to surface temperature conditions along or near the coesite–quartz equilibrium boundary.  相似文献   

13.
造山带中发现超高压矿物柯石英和金刚石,被认为与洋壳或陆壳岩片的深俯冲(>100km)有关。但探讨这些岩片是如何俯冲和折返的?却是一个极具挑战的难题。目前,中国境内含榴辉岩的高压超高压(HP/UHP)变质带已经发现11条,此外,世界各地发现的高压超高压变质带还有至少20条。高压超高压变质带,特别是中国众多的HP-UHP变质带,在什么特定的大地构造条件中形成?又是在怎样的构造背景下折返而剥露地表?中国大陆上为什么出现众多规模可观的HP-UHP变质带?为什么出现洋壳(深)俯冲与陆壳(深)俯冲不同类型的HP-UHP带?这是本文试探讨的问题。根据中国境内的11条高压/超高压变质带形成时代和区域构造背景,将其分为4类:Ⅰ.始特提斯(早古生代)高压/超高压变质带,包括(1)柴北缘-南阿尔金超高压变质带,(2)北祁连-北阿尔金高压变质带,(3)东秦岭超高压变质带;Ⅱ.古特提斯高压/超高压变质带,包括(4)大别高压/超高压变质带,(5)苏鲁高压/超高压变质带,(6)西藏羌塘高压变质带;(7)西藏松多(超)高压变质带;Ⅲ.新特提斯高压/超高压变质带,包括(8)雅鲁藏布江东构造结南迦巴瓦(超)高压变质带;Ⅳ.古亚洲域南缘高压/超高压变质带,包括(9)新疆西南天山超高压变质带,(10)甘肃北山高压变质带,和(11)冀北高压变质带。中国高压/超高压变质带形成的大地构造背景有洋壳(深)俯冲和陆壳(深)俯冲两大成因类型,认为前者大都与始-古特提斯洋盆中微陆块之间的汇聚碰撞有关;后者为大陆块之间剪式碰撞和撕裂式岩石圈舌形板片深俯冲的产物。由于中国(邻区)大陆是三大陆块与许多小陆块聚集构成的巨大拼合体,小陆块在特提斯洋盆(特别是始、古特提斯洋盆)中的独特位置,使陆块之间的刚性洋盆岩石圈得以(深)俯冲插入小陆块之下。而大陆块之间特殊部位的碰撞为陆壳(深)俯冲创造条件。研究表明,高压/超高压变质岩石和蛇绿岩、混杂堆积、俯冲增生楔一起构成俯冲/折返杂岩带;认为代表印支造山带山根物质的大别-苏鲁高压/超高压俯冲/折返杂岩带,呈面形推覆岩片的构造样式叠置在扬子陆块之上,提出汇聚陆块边缘深部地幔物质折返的“斜向挤出”和“沿岩石圈板片的多层隧道的多重/分片挤出”的两种模式;认为走滑断裂在高压/超高压变质岩石的快速折返中起重要作用,即阿尔金走滑断裂、郯庐走滑断裂和喀喇昆仑走滑断裂,分别制约了阿尔金和祁连山中的南北两条早古生代高压/超高压变质带、大别-苏鲁印支期超高压变质带和喜马拉雅西构造结的喜山期超高压变质带的快速折返。  相似文献   
14.
岩石学研究表明北大别罗田榴辉岩经过了榴辉岩相、麻粒岩相和角闪岩相变质作用,表现出多种减压出溶结构.特征性的减压出溶结构有单斜辉石和石榴石中分别发育石英+角闪石+斜长石等与金红石+单斜辉石+角闪石等针状矿物出溶体,以及锆石中含有柯石英残晶.这些进一步证明北大别南部(罗田一带)同北部(如黄尾河、百丈岩等地)榴辉岩一样经过了>5~7CPa的超高压变质作用.  相似文献   
15.
中国中部河南省榴辉岩中柯石英的发现及其构造意义   总被引:12,自引:2,他引:12  
张儒媛  刘忠光 《岩石学报》1993,9(2):186-191
  相似文献   
16.
We have identified by laser micro-Raman spectroscopy that inclusions of coesite occur together with other eclogite-facies mineral phases within metamorphic zircons separated from the large eclogite body at Ulsteinvik–Dimnøy on Hareidland. This is the first identification of coesite from this portion of the northwestern Western Gneiss Region (WGR) and supports continuity of ultrahigh-pressure (UHP) metamorphism between the documented coesite occurrences on Stadlandet to the south and the microdiamond and coesite pseudomorph localities on Fjørtoft in the Nordøyene to the north. The zircons, first analysed by U–Pb TIMS in 1973, have been re-analysed and have yielded a much more precise age of 401.6±1.6 Ma, that overlaps with the previously determined age. Our discovery of coesite and the indication of a close to 402 Ma formation age add to a growing number of mid–late Early Devonian ages that signal that the UHP metamorphism in this part of west Norway occurred relatively late in the Caledonian orogenic cycle. These observations should be incorporated in geodynamic models for the exhumation of these rocks and for the metastable preservation of eclogite-facies mineralogies.  相似文献   
17.
The Shuanghe ultrahigh-pressure (UHP) slab in the Dabie Mountains consists of layered coesite-bearing eclogite, jadeite quartzite, marble and biotite gneiss, and is fault bounded against hosting orthogneiss. Representative assemblages of eclogite are Grt+Omp+Coe+Rt±Ky±Phn±Mgs; it formed at P>27 kbar and 680–720±50 °C. During exhumation, these UHP rocks experienced multistage retrograde metamorphism. Coesite was overprinted by quartz aggregates, phengite by biotite±muscovite and rutile by titanite. Garnet was successively replaced by a thin rim of Amp, Amp+Pl, and Amp+Ep±Bt+Pl (minor). Omphacite and kyanite were replaced by Amp+Pl±Cpx (or ±Bt) and by Zo+Pl+Ms±Mrg±Bt, respectively. Secondary calcite occurs as irregular pockets in some layers. An outcrop near the UHP slab border is composed of 20 thin, concordant layers of foliated eclogites, amphibolite and gneissic rocks of variable bulk composition. These layers exhibit mineral assemblages and textures transitional from less altered through extensively retrograded eclogite to gneissic rock of low-amphibolite facies through hydration, metasomatism and recrystallization. Retrograde metamorphism has caused oxygen and hydrogen isotope disequilibria between some of the minerals, but the fluid for retrograde reactions was internally buffered in the stable isotope compositions. Retrograde metamorphism of variable extent may be attributed to selective infiltration of retrograde fluids of CO2-rich and low-salinity aqueous, intensity of deformation and mineral resistance to alteration. The fluid phase for retrogression may have occurred either as discontinuous flow along grain boundaries in completely retrograded eclogites, and/or as isolated pockets in extensive or less altered eclogite layers.  相似文献   
18.
Z.V. Spetsius   《Lithos》2004,77(1-4):525-538
Highly aluminous xenoliths include kyanite-, corundum- and coesite-bearing eclogites, grospydites and alkremites. These xenoliths are present in different kimberlites of Yakutia but have most often been found in Udachnaya and other pipes of the central Daldyn–Alakitsky region. Kimberlites of this field also contain eclogite-like xenoliths with kyanite and corundum that originate in the lower crust or the lower crust–upper mantle transition zone. Petrographic study shows that two rock groups of different structure and chemistry can be distinguished among kyanite eclogites: fine- to medium-grained with mosaic structure and coarse-grained with cataclastic structure. Eclogites with mosaic structure are characterized by the occurrences of symplectite intergrowths of garnet with kyanite, clinopyroxene and coesite; only in this group do grospydites occur. In cataclastic eclogites, coarse-grained coesite occurs, corresponding in size to other rock-forming minerals. Highly aluminous xenoliths differ from bimineralic eclogites in their high content of Al2O3 and total alkali content. Coesite-bearing varieties are characterized by low MgO content and higher Na/K and Fe2+/Fe3+ ratios, as well as high contents of Na2O. Geochemical peculiarities of kyanite eclogites and other rocks are exhibited by a sloping chondrite-normalized distribution of rare earth elements (REE) in garnets and low Y/Zr ratio, in contrast to bimineralic rocks. Coesite is found in more than 20 kyanite eclogites and grospydites from Udachnaya. Grospydites with coesite from Zagadochnaya pipe are described. Three varieties of coesite in these rocks are distinguished: (a) subhedral grains with size of 1.0–3.0 mm; (b) inclusions in the rock-forming minerals; (c) sub-graphic intergrowths with garnet. The presence and preservation of coesite in eclogites indicate both high pressure of formation (more than 30 kbar) and set a number of constraints on the timing of xenolith cooling during entrainment and transport to the surface. Different ways of formation of the highly aluminous eclogites are discussed. Petrographic observations and geochemistry suggest that some highly aluminous rocks have formed as a result of crystallization of anorthosite rocks in abyssal conditions. δ18O-estimations and other petrologic evidence point out the possible origin of some of these xenoliths as the result of subduction of oceanic crust. Diamondiferous samples have been found in all varieties except alkremites. Usually these eclogites contain cubic or coated diamonds. However, two sample corundum-bearing eclogites with diamonds from the Udachnaya pipe contain octahedra that show evidence of resorption.  相似文献   
19.
Coesite and omphacite inclusions have been identified for the first time as minute inclusions in zircon from amphibolite-facies granitic orthogneiss in the Sulu ultrahigh-pressure (UHP) metamorphic terrane of eastern China by Raman spectroscopy and microprobe analyses. The occurrences of these minerals in the voluminous granitic gneiss of Sulu support a regional and pervasive UHP metamorphic event that predated regional amphibolitic retrogression. Taking into account the widespread discoveries of coesite in other lithologies, we thus conclude that a substantial crustal component in the Sulu UHP metamorphic terrane appears to have shared a common history of Triassic subduction to mantle depths and later exhumation.  相似文献   
20.
The microtextures of stishovite and coesite in shocked non-porous lithic clasts from suevite of the Ries impact structure were studied in transmitted light and under the scanning electron microscope. Both high-pressure silica phases were identified in situ by laser-Raman spectroscopy. They formed from silica melt as well as by solid-state transformation. In weakly shocked rocks (stage I), fine-grained stishovite (≤1.8 μm) occurs in thin pseudotachylite veins of quartz-rich rocks, where it obviously nucleated from high-pressure frictional melts. Generally no stishovite was found in planar deformation features (PDFs) within grains of rock-forming quartz. The single exception is a highly shocked quartz grain, trapped between a pseudotachylite vein and a large ilmenite grain, in which stishovite occurs within two sets of lamellae. It is assumed that in this case the small stishovite grains formed by the interplay of conductive heating and shock reverberation. In strongly shocked rocks (stages Ib–III, above ∼30 GPa), grains of former quartz typically contain abundant and variably sized stishovite (<6 μm) embedded within a dense amorphous silica phase in the interstices between PDFs. The formation of transparent diaplectic glass in adjacent domains results from the breakdown of stishovite and the transformation of the dense amorphous phase and PDFs to diaplectic glass in the solid state. Coesite formed during unloading occurs in two textural varieties. Granular micrometre-sized coesite occurs embedded in silica melt glass along former fractures and grain boundaries. These former high-pressure melt pockets are surrounded by diaplectic glass or by domains consisting of microcrystalline coesite and earlier formed stishovite. The latter is mostly replaced by amorphous silica.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号