首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   759篇
  免费   148篇
  国内免费   172篇
测绘学   39篇
大气科学   16篇
地球物理   180篇
地质学   694篇
海洋学   38篇
天文学   1篇
综合类   68篇
自然地理   43篇
  2024年   1篇
  2023年   3篇
  2022年   12篇
  2021年   20篇
  2020年   18篇
  2019年   18篇
  2018年   25篇
  2017年   29篇
  2016年   29篇
  2015年   28篇
  2014年   48篇
  2013年   38篇
  2012年   56篇
  2011年   60篇
  2010年   42篇
  2009年   55篇
  2008年   67篇
  2007年   63篇
  2006年   52篇
  2005年   35篇
  2004年   31篇
  2003年   39篇
  2002年   35篇
  2001年   29篇
  2000年   32篇
  1999年   29篇
  1998年   21篇
  1997年   29篇
  1996年   24篇
  1995年   11篇
  1994年   13篇
  1993年   15篇
  1992年   10篇
  1991年   5篇
  1990年   9篇
  1989年   6篇
  1988年   4篇
  1987年   6篇
  1986年   7篇
  1985年   7篇
  1984年   9篇
  1983年   3篇
  1982年   2篇
  1980年   1篇
  1978年   1篇
  1976年   1篇
  1954年   1篇
排序方式: 共有1079条查询结果,搜索用时 31 毫秒
71.
Summary A number of field and laboratory tests have been carried out on more than 15 coal seams of compressive strengths ranging from 19 MPa to 44 MPa to evolve methods which would help in the selection of suitable coaling machines for hard coal seams. The effect of physico-mechanical properties on cuttability were studied in the laboratory for all these coal seams to identify the relevant parameters affecting the specific energy of coal cuttability. These data were subjected to regression analysis to find the best fit for estimation of laboratory specific energy of coal samples on the basis of simple laboratory and field tests for the strength parameters. Field studies were also conducted over a large number of active mechanized coal faces to study in situ cuttability along with the geo-mining conditions of the site. The field and the laboratory data so generated were correlated and an attempt is made to establish a relationship for estimating the field specific energy for a particular capacity of coaling machines by considering the geo-mining domain of the field in totality.  相似文献   
72.
断块构造区域内煤层及其周围岩层在构造应力作用下的形变具有很好的协调性和密切的相关性。利用煤层构造破碎率,能预测底板隔水层的构造破坏程度。经过几年的现场试验研究,证明该方法简便,结果直观。  相似文献   
73.
Abstract Newly obtained radiolarian biostratigraphic age combined with previous isotopic age of the Troodos ophiolite shows that the ophiolite becomes systematically younger from east to west: Turonian, early Campanian, and late Campanian. The youngest late Campanian part of the ophiolite is directly covered by the volcaniclastic sediment derived from an active island arc, whereas the older part is covered by pelagic radiolarite. These facts constitute evidence that the Troodos ophiolite was probably emplaced during the subduction of an active spreading ridge.  相似文献   
74.
冲绳海槽宫古段中央地堑的形态与分布   总被引:3,自引:0,他引:3  
采用中国科学院海洋研究所“科学1号”调查船及国家海洋局“向阳红9号”调查船最近几年在冲绳海槽宫古段进行海底地形及反射地震调查所取得的数据,首次详细展示了冲绳海槽宫古段南北长约200km区域内中央地堑的形态及空间展布特征。本文给出的成果大大加深了关于冲绳海槽中央地堑各种变化的认识。指出,按照形态,中央地堑分为U型、V型和半地堑三种。其中大部分中央地堑为U型地堑。地堑的深度40~250m,宽度6~14km,长度17~33km。冲绳海槽宫古段的最大水深为2244.4m,位于中央地堑城阳段北端底部靠东的一侧(125°19.3′E,25°49.8′N)。本研究区的中央地堑可分为断续的9段,从东北向西南大致呈右旋雁行排列。但黄岛段相对于崂山段,城阳段相对于莱西段,李仓段相对于城阳段又稍微向西偏出,呈现为左旋雁行排列。地堑的走向一般为N60°E左右,相对于冲绳海槽的走向更偏向于东西方向,偏角在15°左右。各段中央地堑是被NW向断裂错开的。这些断裂在海底表现为明显的海底断崖地貌和陡沟地貌,在地震剖面上表现为明显的地层错位,其错位的幅度往往老地层比新地层要大。根据地震剖面分析,这些NW向的断裂应该是走滑性质的。本文展示的中央地堑在形态上和空间展布形式上都和扩张洋脊类似。莱西段和城阳段中央地堑之间重叠地堑,在形式上也类似于扩张洋脊的重叠扩张中心。从地堑深度较浅并发育重叠地堑来分析,冲绳海槽的扩张速率应当介于慢速扩张和中速扩张之间。本研究区莱西段、即墨段和平度段海底地形相对较高,中央地堑深度变浅,并发育重叠中央地堑,应该相当于快速扩张大洋中脊的轴高,可能是正在孕育岩浆活动的位置。目前我们所观测到的中央地堑的错断和有规律的排列说明海槽的主体演化过程已经在拉张盆地和断陷盆地的基础上上升到一个更高的阶段。本文根据中央地堑的展布形式、重叠中央地堑,及其两侧中央地堑中的海底山推测此区域海底扩张可能正在进行。  相似文献   
75.
对研究区内3号煤储层的几何形态、割理和孔隙系统进行了研究,并引入了储层结构综合指数(SI)来评价研究区内煤层透气性特征和甲烷运移能力,并得出了如下结论:①全区煤层厚度稳定,是煤层甲烷的良好储集层;②根据全区割理发育程度推测出,构造主应力来自NE-SW方向;③通过孔隙系统研究,3号煤层基本上属于非渗透性储层;④成庄井田3号煤层结构综合指数(SI)等值线平面图,显示了煤层透气性由东北向西南呈逐渐变差的趋势。  相似文献   
76.
Several Mio-Pliocene aged lignite seams occur as part of a non-marine transgressive sequence in the Elhovo graben in south-eastern Bulgaria. The present study is focused on 45 samples collected from three boreholes in the eastern part of the basin. Petrographic data along with ash and sulphur contents were used in order to determine the lateral and vertical variations of the coal facies and depositional environment of the Elhovo lignite.The lignite seams accumulated in a rheotrophic, low-lying mire with high pH value and are characterized by high ash yields and sulphur contents. Despite of the neutral to weakly alkaline environment the bacterial activity was limited and the tissue preservation and gelification were mainly controlled by the redox conditions.Vegetation rich in decay resistant conifers dominated in the Elhovo basin together with mesophytic angiosperm species. The absence of algal remains and sapropelic coal indicated that open water areas were not present during peat accumulation. The latter processed in an environment, characterized by low subsidence rate, in which prior to the burial the woods were subjected to severe mechanical destruction. According to our interpretation, the enhanced impregnation of the tissues bacteria and fungi played only a secondary role in the process of humification. The lignite from borehole 122 and partly from BH 145 deposited in an environment characterized by relatively low (ground)water table, whereas to the south an area dominated by a flooded forest swamp (BH 104) formed. This is suggested by the better tissue preservation and gelification of the organic matter in BH 104. The vertical variation of the maceral composition in the studied lignite is interpreted as a consequence of vegetational changes, rather than to changes in the depositional environment. The low contents of inertinite macerals indicate that despite of the low water level the environment was relatively wet and the thermal and oxidative destruction of the tissues was limited.Peat accumulation was terminated by a major flooding event and a short term establishment of a lake. In contrast to the West Maritsa basin, no seam formed in the Elhovo basin during the filling stage of the lake.  相似文献   
77.
The geochemistry of trace elements in the underground and open-pit mine of the Goze Delchev subbituminous coal deposit have been studied. The coals in both mines are highly enriched in W, Ge and Be, and at less extent in As, Mn and Y as compared with the world-wide Clarkes for subbituminous coals. Ni and Ti are also enhanced in the underground coals, and Zr, Cr and Mo in the open-pit mine coals.Characteristic for the trace element contents in the deposit is a regular variation with depth. The following patterns were distinguished for profile I: a — the element content decreases from the bottom to the top of the bed paralleling ash distribution (Fe, Co, As, Sb, V, Y, Mo, Cs, REE, Hf, Ta, Th, P and Au); b — Ge and W are enriched in the near-bottom and near-top coals; c — in the middle part of the bed the content of K and Rb is maximal, while that of U is slightly enriched; d — Ba content decreases from the top to the bottom of the bed. In profile II, W and Be contents decrease from the bottom to the top. The near-bottom, and especially the near-roof samples of profile IV are highly enriched in Ge, while for W the highest is the content of the near-bottom sample.Ge, Be, As, Mn, Cl and Br are mainly organically associated. The organic affiliation is still strong for Co, B, Sr, Ba, Sb, U, Th, Mo, La, Ce, Sm, Tb and Yb in the underground coals, and Fe, Co, Na, W, Sr, Y and Ag in the coals from the open-pit mine. K, Rb, Ti, Zr, Hf and Ta are of dominant inorganic affinity. The chalcophile and siderophile elements correlate positively with Fe and each other and may be bound partly with pyrite or other sulphides and iron containing minerals.Compared statistically by the t-criteria, the elements Na, Li, Cu, Zn, Pb, Cr, Ni, Co, Mo, Fe and Be are of higher content in the open-pit mine. Tungsten is the only element of higher concentration in the underground mine. The contents of Ge, As, Sr, V, Mn, Y, Zr and P are not statistically different in both mines.It was supposed that there were multiple sources of the trace elements in the deposit. The source of the highly enriched elements (W, Ge, Be, and As) most probably were the thermal waters in the source area. The contemporary mineral springs are of high content of these elements. Another source were the hosting Mesta volcanic rocks, which are enriched in Sb, Mo, Hf, U, Th, As, Li and Rb. Some of the volcanics were hydrothermally altered and enriched or depleted of many elements. Thus, the hydrothermal solutions were also suppliers of elements for the coals. It is obvious that the contents, distribution and paragenesis, of the trace elements in both Goze Delchev coals reflect the geochemical specialization of the source area, including rocks, paleo- and contemporary thermal waters.  相似文献   
78.
Underground coal mines have always had to control the presence of different gases in the mining environment. Among these gases, methane is the most important one, since it is inherent to coal. Despite of the technical developments in recent decades, methane hazards have not yet been fully avoided. This is partly due to the increasing depths of modern mines, where methane emissions are higher, and also to other mining-related circumstances, such as the increase in production rates and its consequences: difficulties in controlling the increasing methane levels, increasing mechanization, the use of explosives and not paying close attention to methane control systems.The main purposes of this paper are to establish site measurements using some critical parameters that are not part of the standard mining-control methods for risk assessment and to analyze the gas behavior of subvertical coal seams in deep mines in order to prevent gas incidents from occurring. The ultimate goal is the improvement in mining conditions and therefore in safety conditions.For this purpose, two different mines were instrumented for mine control and monitoring. Both mines belong to the Riosa–Olloniego coalfield, in the Asturias Central Basin, Spain and the areas instrumented are mined via subhorizontal sublevels at an actual depth of around 1000 m under the overburden of Mount Lusorio.During this research, a property favoring gas outbursts was site measured for the first time in an outburst-prone coal (8th Coalbed), gas pressure and its variations, which contributed to complete the data available from previous characterizations and to set some guidelines for assessing the potential outburst-prone areas. A gas-measurement-tube set has been designed for measuring gas pressure as well as its variation over time as a result of nearby workings and to calculate permeability.The paper establishes the effect of overlapping of works, but it also shows the efficacy of two preventive measures to be applied: high pressure water infusion and the exploitation of a protective coal seam (7th Coalbed), that must be mined preferably two complete sublevels before commencing the advance in the outburst-prone coalbed. Both measures constitute an improvement in the mining sequence and therefore in safety, and should be completed with a systematic measurement to control the risk: gas pressure in the 8th Coalbed in the area of influence of other workings, to establish the most suitable moment to renew the advance. Further researches could focus on ascertaining the permeability, not only in mined areas but also in areas of the mine that are still not affected by mining work and on tuning more finely the ranges of influence of overstress time and overlap distance of the workings of the 7th Coalbed in the 8th Coalbed.  相似文献   
79.
煤层自燃是中国北方煤田中普遍存在的灾害现象,它不但烧掉了大量的煤炭资源,而且还污染了环境。实践证明,利用遥感影像判别火区位置、圈定火区范围和对火区进行动态监测,及时为灭火工程提供信息,是一项经济和社会意义很大的工作。由于受多种因素的制约,不同地区、不同波段、不同时相、不同空间分辨率的遥感图像,其影像特征(含与煤层自燃有关的热异常影像特征)都有较大的差异,因而从图像上分析和提取地物的热红外辐射特征时,需要考虑遥感图像类型、成像时间、地形条件、气象条件和岩性特征等因素的影响。本文着重讨论了地表辐射温度与上述各项因素之间的关系。  相似文献   
80.
Gas emission prediction and recovery in underground coal mines   总被引:2,自引:0,他引:2  
Strata gas can be released and captured from non-active and active gas resources either from virgin or relaxed strata, both prior to and when mining activities take place. The high and irregular gas emissions associated with high production longwall mining have provided a need to optimise the methods used to predict these gas levels and the ventilation requirements for gas dilution. A forecast of gas emissions during development drivage and longwall mining indicated possible gas and ventilation problems requiring the introduction of various gas drainage techniques and in maintaining the necessary air quantities in ventilation systems to satisfy the statutory gas limitations for various coal production rates. Although there are sound principles used in world-recognised methods of gas emission prediction, a new approach developed from long-term practical experience in underground gassy coal mine practices and gas-rock mechanics studies appear most suitable for local conditions and mining systems in use. The Lunagas ‘Floorgas' and ‘Roofgas' geomechanical and gas emission models offer an effective solution to these problems. Both programs are the most advanced engineering, numerical tools available to calculate gas source contributions to total gassiness and improve the accuracy and quality of gas control, gas capture technologies and ventilation system design.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号