首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7088篇
  免费   1307篇
  国内免费   1792篇
测绘学   296篇
大气科学   523篇
地球物理   1034篇
地质学   5572篇
海洋学   1276篇
天文学   80篇
综合类   366篇
自然地理   1040篇
  2024年   40篇
  2023年   110篇
  2022年   277篇
  2021年   292篇
  2020年   295篇
  2019年   380篇
  2018年   269篇
  2017年   306篇
  2016年   378篇
  2015年   352篇
  2014年   444篇
  2013年   462篇
  2012年   457篇
  2011年   506篇
  2010年   419篇
  2009年   486篇
  2008年   497篇
  2007年   439篇
  2006年   500篇
  2005年   439篇
  2004年   351篇
  2003年   336篇
  2002年   343篇
  2001年   254篇
  2000年   273篇
  1999年   204篇
  1998年   221篇
  1997年   172篇
  1996年   137篇
  1995年   110篇
  1994年   92篇
  1993年   73篇
  1992年   59篇
  1991年   35篇
  1990年   31篇
  1989年   23篇
  1988年   28篇
  1987年   16篇
  1986年   18篇
  1985年   17篇
  1984年   15篇
  1983年   13篇
  1982年   5篇
  1981年   4篇
  1980年   4篇
  1979年   1篇
  1978年   3篇
  1954年   1篇
排序方式: 共有10000条查询结果,搜索用时 62 毫秒
41.
Abstract. In situ investigations of growth and production in a stand of Posidonia oceanica (L.) DELILE at a depth of 4 m at Ischia (Gulf of Naples) were carried out over two growing seasons. Posidonia starts to grow in August and an average bundle produces ten leaves in increasing time intervals until May. Growth curves for the leaves are given. Maximum leaf standing crop is in May with 1300 g dry weight per m-2, leaf area index at this time reaches 22 m2 m-2. Leaf net productivity is highest in March with 12 g dry weight per m2 per day. Annual leaf production is estimated as 3110 g dry weight per m2, “underground” production as 115 g dry weight per m2. About half the leaf production is exported from the system. Adaptive strategies of the growth and production pattern are discussed.  相似文献   
42.
胶莱盆地发育演化及其油气前景探讨   总被引:5,自引:0,他引:5  
根据胶莱盆地区域地质特征,地球动力学背景及盆地中、新生代沉积特征分析,论述盆地的发育和演化阶段,并对胶莱盆地含油气前景进行探讨。  相似文献   
43.
44.
This paper brings together unpublished historical data sets and published literature to review the role of climatic, oceanographic and ecological processes in the marine ecosystem of the eastern Canadian Archipelago. Physical data include characteristics of the water masses, circulation patterns, sea ice conditions, and climatic records from 1950s onward. Biological data include unpublished data sets on nutrients, primary and secondary production, and sedimentation, which were collected during the 1980–1990s in the eastern Canadian Archipelago. These results show high year-to-year variability in nutrient inventories and ratios, the magnitude of the ice algae and phytoplankton bloom, the timing of ice algae sedimentation in the spring, and the composition of the zooplankton community. The significance of this high interannual variability and its effect on pelagic–benthic coupling processes is discussed in the context of climatic and oceanographic forcing, with emphasis on recent (past decade) Arctic changes. An estimate of total primary production in the Archipelago is also presented, along with published production estimates for other Arctic shelves, showing that the Archipelago may support up to 32% of the total primary production of Arctic shelves. The high year-to-year variability in production and carbon transfer pathways (e.g. pelagic versus benthic) in the Archipelago suggest that the system might be resilient to the increased variability in climatic conditions occurring in the past decade. However, this increased variability combined with directional change in climatic and oceanographic conditions might also modify the existing balance of ecological processes. For example, shifts in the timing of events appear to have already occurred in the past decade, with potential cascading effects throughout the ecosystem.  相似文献   
45.
The present paper describes observations, analyses and models of salt-marsh channel network and vegetation patterns with the aim of contributing to the development of predictive models of ecological and morphological co-evolution. Existing and new observations are described, with particular emphasis on remote sensing and ancillary field surveys, which are shown to allow reliable, accurate and repeatable quantitative characterizations of landform and vegetation properties over the spatial scales of interest. The observed channel network morphological characters are then used as the basis and validation of models describing the emergence of channel network and vegetation spatial patterns. In particular, with reference to observations performed in the Venice Lagoon, the note describes: (i) new, 2-cm resolution, characterizations of channel network geometry obtained from “proximal sensing” photographic observations; (ii) the reliable quantitative maps of salt-marsh vegetation which may be retrieved from hyperspectral remote sensing data and field ancillary observations; (iii) a synthesis of recent and new analyses of the statistical properties of vegetation and landform spatial organization, that may be inferred from the maps so derived; (iv) recent and new conceptual and quantitative ecological and geomorphic models developed and validated by remote-sensing and field observations. A coherent observational and theoretical eco-morphodynamic framework is then proposed.  相似文献   
46.
47.
W. Koeve   《Marine Chemistry》2001,74(4):96
Observations of wintertime nutrient concentrations in surface waters are scarce in the temperate and subarctic North Atlantic Ocean. Three new methods of their estimation from spring or early summer observations are described and evaluated. The methods make use of a priori knowledge of the vertical distribution of oxygen saturation and empirical relationships between nutrient concentrations and oxygen saturation. A south–north increase in surface water winter nutrient concentration is observed. Winter nitrate concentrations range from very low levels of about 0.5 μmol dm−3 at 33°N to about 13.5 μmol dm−3 at 60°N. Previous estimates of winter nitrate concentrations have been overestimates by up to 50%. At the Biotrans Site (47°N, 20°W), a typical station in the temperate Northeast Atlantic, a mean winter nitrate concentration of 8 μmol dm−3 is estimated, compared to recently published values between 11 and 12.5 μmol dm−3. It is shown that most of the difference is due to a contribution of remineralised nitrate that had not been recognized in previous winter nutrient estimates. Mesoscale variation of wintertime nitrate concentrations at Biotrans are moderate (less than ±15% of the regional mean value of about 8 μmol dm−3). Interannual variation of the regional mean is small, too. In the available dataset, there was only 1 year with a significantly lower regional mean winter nitrate concentration (7 μmol dm−3), presumably due to restricted deep mixing during an atypically warm winter. The significance of winter nitrate estimates for the assessment of spring-bloom new production and the interpretation of bloom dynamics is evaluated. Applying estimates of wintertime nitrate concentrations of this study, it is found that pre-bloom new production (0.275 mol N m−2) at Biotrans almost equals spring-bloom new production (0.3 mol N m−2). Using previous estimates of wintertime nitrate yields unrealistically high estimates of pre-bloom new production (1.21–1.79 mol N m−2) which are inconsistent with observed levels of primary production and the seasonal development of biomass.  相似文献   
48.
Japanese fisheries production in the Japan/East Sea between 1958 and 2003 increased to their peak (1.76 million tons) in the late 1980s and decreased abruptly with the collapse of Japanese sardine. Catch results for 58 fisheries and various environmental time-series data sets and community indices, including mean trophic level (MTL) and Simpson’s diversity index (DI), were used to investigate the impacts of fishing and climate changes on the structure of the fish community in the Tsushima warm current (TWC) region of the Japan/East Sea. The long-term trend in fisheries production was largely dependent on the Japanese sardine that, as a single species, contributed up to 60% of the total production in the Japanese waters of the Japan/East Sea during the late 1980s. Excluding Japanese sardine, production of the small pelagic species was higher during 1960s and 1990s but lower during 1970s and 1980s. This variation pattern generally corresponds with the trend in water temperature, warmer before early 1960s and after 1990s but colder during 1970s and 1980s. The warm-water, large predatory fishes and cold water demersal species show opposite responses to the water temperature in the TWC region, indicating the significant impact of oceanic conditions on fisheries production of the Japan/East Sea. Declines in demersal fishes and invertebrates during 1970s and 1980s suggested some impact of fishing. MTL and DI show a similar variation pattern: higher during 1960s and 1990s but lower during 1970s and 1980s. In particular, the sharp decline during the 1980s resulted from the abundant sardine catches, suggesting that dominant species have a large effect on the structure of the fish community in the Japan/East Sea. Principal component analysis for 58 time-series data sets of fisheries catches suggested that the fish community varied on inter-annual to inter-decadal scales; the abrupt changes that occurred in the mid-1970s and late 1980s seemed to correspond closely with the climatic regime shifts in the North Pacific. These results strongly suggest that the structure of the fish community in the Japan/East Sea was largely affected by climatic and oceanic regime shifts rather than by fishing. There is no evidence showing “fishing down food webs” in the Japan/East Sea. However, in addition to the impacts of abrupt shifts that occurred in the late 1980s, the large predatory and demersal fishes seem to be facing stronger fishing pressure with the collapse of the Japanese sardine.  相似文献   
49.
中国近海的天然气勘探   总被引:1,自引:0,他引:1  
据最新勘探资料,在综合分析中国近海海域天然气勘探现状、资源潜力及其区域分布规律的基础上,分析了我国近海海域天然气勘探的有利区带及目前比较现实的勘探目标,展示了我国近海海域天然气勘探的良好前景。  相似文献   
50.
A preliminary study of carbon system in the East China Sea   总被引:1,自引:0,他引:1  
In the central part of the East China Sea, the activity of CO2 in the surface water and total carbonate, pH and alkalinity in the water column were determined in winter and autumn of 1993. The activity of CO2 in the continental shelf water was about 50 ppm lower than that of surface air. This decrease corresponds to the absorption of about 40 gC/m2/yr of atmospheric CO2 in the coastal zone or 1 GtC/yr in the global continental shelf, if this rate is applicable to entire coastal seas. The normalized total carbonate contents were higher in the water near the coast and near the bottom. This increase toward the bottom may be due to the organic matter deposited on the bottom. This conclusion is supported by the distribution of pH. The normalized alkalinity distribution also showed higher values in the near-coast water, but in the surface water, indicating the supply of bicarbonate from river water. The residence time of the East China Sea water, including the Yellow Sea water, has been calculated to be about 0.8 yr from the excess alkalinity and the alkalinity input. Using this residence time and the excess carbonate, we can estimate that the amount of dissolved carbonate transported from the coastal zone to the oceanic basin is about 70 gC/m2/yr or 2 GtC/yr/area-of-global-continental-shelf. This also means that the rivers transport carbon to the oceans at a rate of 30 gC/m2/yr of the coastal sea or 0.8 GtC/yr/ area-of-global shelf, the carbon consisting of dissolved inorganic carbonate and terrestrial organic carbon decomposed on the continental shelf.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号