首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1743篇
  免费   14篇
  国内免费   128篇
测绘学   62篇
大气科学   95篇
地球物理   439篇
地质学   999篇
海洋学   126篇
天文学   38篇
综合类   1篇
自然地理   125篇
  2024年   20篇
  2023年   67篇
  2022年   47篇
  2021年   68篇
  2020年   161篇
  2019年   91篇
  2018年   119篇
  2017年   180篇
  2016年   114篇
  2015年   133篇
  2014年   231篇
  2013年   354篇
  2012年   214篇
  2011年   3篇
  2010年   5篇
  2009年   3篇
  2008年   2篇
  2007年   6篇
  2006年   10篇
  2005年   12篇
  2004年   13篇
  2003年   8篇
  2002年   20篇
  2001年   1篇
  1994年   2篇
  1993年   1篇
排序方式: 共有1885条查询结果,搜索用时 0 毫秒
151.
The Late Jurassic Jingshan granite located at the south-eastern margin of the North China Craton contains abundant garnets which can be subdivided into three types based on texture and composition: (i) euhedral garnet in mafic biotite and garnet rich enclave (Grt I), (ii) coarse-grained garnet (Grt II) in the host granite, and (iii) small euhedral garnet in aplite (Grt III). In general, Grt I has higher FeO, CaO and lower MnO contents than Grt II. Grt III has higher Mn, but lower Ca contents than others. Grt I has lower MREE and HREE contents than Grt II. Grt III has prominent and distinctly negative Eu anomaly as well as higher MREE composition compared to the others. Systematic variations in oxygen isotope compositions are observed among the three garnet types, with δ18O values of <3.8‰ in most of Grt I, 3.8–4.7‰ in most Grt II (for inclusion-free garnets), and typically >4.7‰ in Grt III. Some of the Grt II and Grt III display two distinct zonings with cores having similar major and trace element compositions to Grt I.Cathodoluminescence (CL) images revealed that the zircons from different garnet-bearing samples possess fine-scale oscillatory zoned magmatic rims with inherited cores. In situ zircon U–Pb dating and trace element analyses show that the dark-luminescent magmatic rims all have Jurassic concordia ages (∼160 Ma) and similar trace element patterns. Most of the inherited cores also display similar Triassic ages of 210–236 Ma, which is similar to the ages of ultrahigh pressure (UHP) metamorphic rocks of the Dabie–Sulu orogen (230 Ma). In addition, Jurassic concordia ages were also found in a zircon inclusion in Grt I, implying that the Grt I was formed shortly before the main magmatic event. The age data suggest that the three different garnet types may be genetically related and modified by cogenetic magmatic events.Based on the zircon U–Pb ages from different garnet-bearing samples, the major element, trace element, oxygen isotope, and zoning textures of the three kinds of garnet we suggest that Grt I may be peritectic garnet, whereas Grt II and III are probably the results of magmatic dissolution–precipitation processes and re-equilibration of garnets with changing magmatic conditions during melting, differentiation, crystallization, and cooling within the granite. We conclude from the oxygen isotopic character of the garnets and ages of the zircons that the source rocks for the Jingshan granites are from Dabie–Sulu orogen representing the South China Craton.  相似文献   
152.
In South-East Asia, sedimentary basins displaying continental Permian and Triassic deposits have been poorly studied. Among these, the Luang Prabang Basin (North Laos) represents a potential key target to constrain the stratigraphic and structural evolutions of South-East Asia. A combined approach involving sedimentology, palaeontology, geochronology and structural analysis, was thus implemented to study the basin. It resulted in a new geological map, in defining new formations, and in proposing a complete revision of the Late Permian to Triassic stratigraphic succession as well as of the structural organization of the basin. Radiometric ages are used to discuss the synchronism of volcanic activity and sedimentation.The Luang Prabang Basin consists of an asymmetric NE-SW syncline with NE-SW thrusts, located at the contact between Late Permian and Late Triassic deposits. The potential stratigraphic gap at the Permian–Triassic boundary is therefore masked by deformation in the basin. The Late Triassic volcaniclastic continental deposits are representative of alluvial plain and fluvial environments. The basin was fed by several sources, varying from volcanic, carbonated to silicic (non-volcanic). U–Pb dating of euhedral zircon grains provided maximum sedimentation ages. The stratigraphic vertical succession of these ages, from ca. 225, ca. 220 to ca. 216 Ma, indicates that a long lasting volcanism was active during sedimentation and illustrates significant variations in sediment preservation rates in continental environments (from ∼100 m/Ma to ∼3 m/Ma). Anhedral inherited zircon grains gave older ages. A large number of them, at ca. 1870 Ma, imply the reworking of a Proterozoic basement and/or of sediments containing fragments of such a basement. In addition, the Late Triassic (Carnian to Norian) sediments yielded to a new dicynodont skull, attributed to the Kannemeyeriiform group family, from layers dated in between ∼225 and ∼221 Ma (Carnian).  相似文献   
153.
Highly elevated and well-preserved peneplains are characteristic geomorphic features of the Tibetan plateau in the northern Lhasa Terrane, north–northwest of Nam Co. The peneplains were carved in granitoids and in their metasedimentary host formations. We use multi-method geochronology (zircon U–Pb and [U–Th]/He dating and apatite fission track and [U–Th]/He dating) to constrain the post-emplacement thermal history of the granitoids and the timing and rate of final exhumation of the peneplain areas. LA-ICP-MS U–Pb geochronology of zircons yields two narrow age groups for the intrusions at around 118 Ma and 85 Ma, and a third group records Paleocene volcanic activity (63–58 Ma) in the Nam Co area. The low-temperature thermochronometers indicate common age groups for the entire Nam Co area: zircon (U–Th)/He ages cluster around 75 Ma, apatite fission track ages around 60 Ma and apatite (U–Th)/He ages around 50 Ma. Modelling of the thermochronological data indicates that exhumation of the basement blocks took place in latest Cretaceous to earliest Paleogene time. By Middle Eocene time the relief was already flat, documented by a thin alluvial sediment sequence covering a part of the planated area. The present-day horst and graben structure of the peneplains is a Late Cenozoic feature triggered by E–W extension of the Tibetan Plateau. The new thermochronological data precisely bracket the age of the planation to Early Eocene, i.e. between ca. 55 and 45 Ma. The erosional base level can be deduced from the presence of Early Cretaceous zircon grains in Eocene strata of Bengal Basin. The sediment generated during exhumation of the Nam Co area was transported by an Early Cenozoic river system into the ocean, suggesting that planation occurred at low elevation.  相似文献   
154.
The study deals spatial mapping of earthquake hazard parameters like annual and 100-years mode along with their 90% probability of not being exceeded (NBE) in the Hindukush–Pamir Himalaya and adjoining regions. For this purpose, we applied a straightforward and most robust method known as Gumbel’s third asymptotic distribution of extreme values (GIII). A homogeneous and complete earthquake catalogue during the period 1900–2010 with magnitude MW  4.0 is utilized to estimate these earthquake hazard parameters. An equal grid point mesh, of 1° longitude X 1° latitude, is chosen to produce detailed earthquake hazard maps. This performance allows analysis of the localized seismicity parameters and representation of their regional variations as contour maps. The estimated result of annual mode with 90% probability of NBE is expected to exceed the values of MW 6.0 in the Sulaiman–Kirthar ranges of Pakistan and northwestern part of the Nepal and surroundings in the examined region. The 100-years mode with 90% probability of NBE is expected to exceed the value of MW 8.0 in the Hindukush–Pamir Himalaya with Caucasus mountain belt, the Sulaiman–Kirthar ranges of Pakistan, northwestern part of the Nepal and surroundings, the Kangra–Himanchal Pradesh and Kashmir of India. The estimated high values of earthquake hazard parameters are mostly correlated with the main tectonic regimes of the examined region. The spatial variations of earthquake hazard parameters reveal that the examined region exhibits more complexity and has high crustal heterogeneity. The spatial maps provide a brief atlas of the earthquake hazard in the region.  相似文献   
155.
The provenance of the large and super-large scale bauxite deposits developed in the Wuchuan–Zheng’an–Daozhen (WZD) alumina metallogenic province in the Yangtze Block of South China is poorly understood. LA-ICP-MS and SIMS U–Pb dating of detrital zircons from bauxite ores and the underlying Hanjiadian Group in the WZD area provide new constrains on the provenance of the WZD bauxite and provide new insight on the bauxite ore-forming process. The ages of the detrital zircons in the bauxites and the zircons in the Hanjiadian Group are similar suggesting that the bauxites are genetically related to the Hanjiadian sediments. The detrital zircon populations of the four samples studied show four primary age peaks: 2600–2400 Ma, 1900–1700 Ma, 1300–700 Ma and 700–400 Ma. The age distribution of detrital zircons indicates that they are probably derived from various sources including Neoproterozoic, Mesoproterozoic, Paleoproterozoic, Archean and some minor Paleozoic sources. The most abundant age population contains a continuous range of ages from 1300 to 700 Ma, ages consistent with subduction-related magmatic activities (1000–740 Ma) along the western margin of the Yangtze Block and the worldwide Grenville orogenic events (1300–1000 Ma). Thus, it is suggested that the main provenances of the WZD bauxite and the Hanjiadian Group are the Neoproterozoic igneous rocks in the western Yangtze Block and the Grenville-age igneous rocks in the southern Cathaysia Block. In addition, this work verifies that the global Grenville orogenic events and subduction-related magmatic activities associated with the Yangtze Block had a significant influence on the formation of the WZD bauxite deposits.  相似文献   
156.
This paper deals with the petrology and U–Pb dating of coesite-bearing garnet–phengite schist from the Kebuerte Valley, Chinese western Tianshan. It mainly consists of porphyroblastic garnet, phengite, quartz and chlorite with minor amounts of paragonite, albite, zoisite and chloritoid. The well preserved coesite inclusions (∼100 μm) in garnet are encircled by a narrow rim of quartz. They were identified by optical microscopy and confirmed by Raman spectroscopy. Using the computer program THERMOCALC, the peak metamorphic conditions of 29 kbar and 565 °C were obtained via garnet isopleth geothermobarometry. The predicted UHP peak mineral assemblage comprises garnet + jadeite + lawsonite + carpholite + coesite + phengite. The metapelite records prograde quartz–eclogite-facies metamorphism, UHP coesite–eclogite-facies peak metamorphism, and a late greenschist-facies overprint. Phase equilibrium modeling predicts that garnet mainly grew in the mineral assemblages garnet + jadeite + lawsonite + chloritoid + glaucophane + quartz + phengite and garnet + jadeite + lawsonite + carpholite + glaucophane + quartz + phengite. SHRIMP U–Pb zircon dating of the coesite-bearing metapelite yielded the peak metamorphic age 320.4 ± 3.7 Ma. For the first time, age data of coesite-bearing UHP metapelite from the Chinese western Tianshan are presented in this paper. They are in accord with published ages obtained from eclogite from other localities in the Chinese western Tianshan and the Kyrgyz South Tianshan and therefore prove a widespread occurrence of UHP metamorphism.  相似文献   
157.
The Lanping basin is a significant Pb–Zn–Cu–Ag mineralization belt of the Sanjiang Tethyan metallogenic province in China. Over 100 thrust-controlled, sediment-hosted, Himalayan base metal deposits have been discovered in this basin, including the largest sandstone-hosted Pb–Zn deposit in the world (Jinding), and several Cu ± Ag ± Co deposits (Baiyangping, Baiyangchang and Jinman). These deposits, with total reserves of over 16.0 Mt Pb + Zn, 0.6 Mt Cu, and 7000 t Ag, are mainly hosted in Meso-Cenozoic mottled clastic rocks, and strictly controlled by two Cenozoic thrust systems developed in the western and eastern segments of the Lanping basin.To define the metallogenic history of the study area, we dated nine calcite samples associated with copper sulfides from the Jinman Cu deposit by the Sm–Nd method and five molybdenite samples from the Liancheng Cu–Mo deposit by the Re–Os method. The calcite Sm–Nd age for the Jinman deposit (58 ± 5 Ma) and the molybdenite Re–Os age for the Liancheng deposit (48 ± 2 Ma), together with previously published chronological data, demonstrate (1) the Cu–Ag mineralization in the western Lanping basin mainly occurred in three episodes (i.e., ∼56–54, 51–48, and 31–29 Ma), corresponding to the main- and late-collisional stages of the Indo–Asian orogeny; and (2) the Pb–Zn–Ag (±Cu) mineralization in the eastern Lanping basin lacked precise and direct dating, however, the apatite fission track ages of several representative deposits (21 ± 4 Ma to 32 ± 5 Ma) may offer some constraints on the mineralization age.  相似文献   
158.
This work presents an integrated study of zircon U–Pb ages and Hf isotope along with whole-rock geochemistry on Silurian Fengdingshan I-type granites and Taoyuan mafic–felsic intrusive Complex located at the southeastern margin of the Yangtze Block, filling in a gap in understanding of Paleozoic I-type granites and mafic-intermediate igneous rocks in the eastern South China Craton (SCC). The Fengdingshan granite and Taoyuan hornblende gabbro are dated at 436 ± 5 Ma and 409 ± 2 Ma, respectively. The Fengdingshan granites display characteristics of calc-alkaline I-type granite with high initial 87Sr/86Sr ratios of 0.7093–0.7127, low εNd(t) values ranging from −5.6 to −5.4 and corresponding Nd model ages (T2DM) of 1.6 Ga. Their zircon grains have εHf(t) values ranging from −2.7 to 2.6 and model ages of 951–1164 Ma. The Taoyuan mafic rocks exhibit typical arc-like geochemistry, with enrichment in Rb, Th, U and Pb and depletion in Nb, Ta. They have initial 87Sr/86Sr ratios of 0.7053–0.7058, εNd(t) values of 0.2–1.6 and corresponding T2DM of 1.0–1.1 Ga. Their zircon grains have εHf(t) values ranging from 3.2 to 6.1 and model ages of 774–911 Ma. Diorite and granodiorite from the Taoyuan Complex have initial 87Sr/86Sr ratios of 0.7065–0.7117, εNd(t) values from −5.7 to −1.9 and Nd model ages of 1.3–1.6 Ga. The petrographic and geochemical characteristics indicate that the Fengdingshan granites probably formed by reworking of Neoproterozoic basalts with very little of juvenile mantle-derived magma. The Taoyuan Complex formed by magma mixing and mingling, in which the mafic member originated from a metasomatized lithospheric mantle. Both the Fengdingshan and Taoyuan Plutons formed in a post-orogenic collapse stage in an intracontinental tectonic regime. Besides the Paleozoic Fengdingshan granites and Taoyuan hornblende gabbro, other Neoproterozoic and Indosinian igneous rocks located along the southeastern and western margin of the Yangtze Block also exhibit decoupled Nd–Hf isotopic systemics, which may be a fingerprint of a previous late Mesoproterozoic to early Neoproterozoic oceanic subduction.  相似文献   
159.
We have investigated the petrography, geochemistry, and detrital zircon U–Pb LA-ICPMS dating of sandstone from the Gorkhi Formation of the Khangai–Khentei belt in the Ulaanbaatar area, central Mongolia. These data are used to constrain the provenance and source rock composition of the accretionary complex, which is linked to subduction of the Paleo-Asian Ocean within the Central Asian Orogenic Belt during the Middle Devonian to Early Carboniferous. Field and microscopic observations of the modal composition of sandstone and constituent mineral chemistry indicate that the sandstone of the Gorkhi Formation is feldspathic arenite, enriched in saussuritized plagioclase. Geochemical data show that most of the sandstone and shale were derived from a continental margin to continental island arc setting, with plutonic rocks being the source rocks. Detrital zircon 206Pb/238U ages of two sandstones yields age peaks of 322 ± 3 and 346 ± 3 Ma. The zircon 206Pb/238U age of a quartz–pumpellyite vein that cuts sandstone has a weighted mean age of 339 ± 3 Ma. Based on these zircon ages, we infer that the depositional age of sandstone within the Gorkhi Formation ranges from 320 to 340 Ma (i.e., Early Carboniferous). The provenance and depositional age of the Gorkhi Formation suggest that the evolution of the accretionary complex was influenced by the intrusion and erosion of plutonic rocks during the Early Carboniferous. We also suggest that spatial and temporal changes in the provenance of the accretionary complex in the Khangai–Khentei belt, which developed aound the southern continental margin of the Siberian Craton in relation to island arc activity, were influenced by northward subduction of the Paleo-Asian Ocean plate.  相似文献   
160.
无机生油假说及其在中国的应用前景   总被引:4,自引:1,他引:4       下载免费PDF全文
袁学诚  李善芳 《中国地质》2012,39(4):843-854
无机生油假说认为,原油和天然气和近地表的生物物质没有根本联系,它们是生成于地幔内的非生物来源的碳氢化合物。因而油气不是一个不可再生资源,而是一个可再生资源。无机生油假说得到地质学、物理学和化学等三个基本学科的支持。在地质观察上,发现全球许多大油田的油气储藏与原始生物物质之间数量上有巨大落差,难于解释它们是由生物生成的。此外,有许多地区在结晶基底或变质基底内,或直接位于其上的沉积岩中发现石油。从生物生油假说来说,也是无法理解的。在化学上,早在二战期间,德国已由人工合成石油(费托合成),并生产了占德国战争中用油的9%的石油。无可争辩地说明,无机可以生成石油。根据化学(物理学)热力学理论分析确认,甲烷是唯一一种在标准温压条件(温度为298.15 K;压力为101325 Pa)下稳定的碳氢化合物,从甲烷形成正常烷属烃只有在压力>3×106kPa、温度>700°C时(相当于地下深度约100 km)才有可能。在地壳内的温压条件下由生物变质形成石油的假说,与化学热力学的基本原则相抵触。从氧化的有机分子,如碳水化合物(C6H12O6)形成较高的碳氢化合物在任何条件下都是不可能的。根据我国长期对深部构造的研究,笔者认为在中国东部及西太平洋蘑菇云岩石圈地幔发育的地区是寻找巨型无机油气田的有利地区,建议在发育蘑菇云岩石圈地幔地区开展无机油气田的勘探,并在无机油气田远景地区布置超深参数钻,以评价含油气远景。另外建议加强物探工作,尤其是研究地震勘探处理基底内三维含油气构造的技术。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号