首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1707篇
  免费   12篇
  国内免费   125篇
测绘学   62篇
大气科学   94篇
地球物理   435篇
地质学   965篇
海洋学   125篇
天文学   37篇
综合类   1篇
自然地理   125篇
  2024年   15篇
  2023年   38篇
  2022年   46篇
  2021年   67篇
  2020年   161篇
  2019年   91篇
  2018年   119篇
  2017年   179篇
  2016年   114篇
  2015年   133篇
  2014年   231篇
  2013年   354篇
  2012年   214篇
  2011年   2篇
  2010年   5篇
  2009年   2篇
  2008年   2篇
  2007年   6篇
  2006年   10篇
  2005年   12篇
  2004年   13篇
  2003年   8篇
  2002年   19篇
  2001年   1篇
  1994年   2篇
排序方式: 共有1844条查询结果,搜索用时 328 毫秒
121.
《Comptes Rendus Geoscience》2015,347(3):105-111
The income of the scientists in France during the 17th to the middle of the 19th century is reviewed and compared to the cost of their instruments. Only a small number of scientists received enough public money to be able to do full-time research; this number increased substantially after the Revolution. Most scientists had to have other sources of income, in particular to be able to purchase their instruments. Large research projects, generally decided and financed by the Academy of Sciences, took place during this period, requiring collaborative interdisciplinary efforts and a considerable logistics: they anticipate our present cooperative programs and giant research facilities.  相似文献   
122.
Analysis of long-term solar data from different observatories is required to compare and confirm the various level of solar activity in depth. In this paper, we study the north–south asymmetry of monthly mean sunspot area distribution during the cycle-23 and rising phase of cycle-24 using the data from Kodaikanal Observatory (KO), Michelson Doppler Imager (MDI) and Solar Optical Observing Network (SOON). Our analysis confirmed the double peak behavior of solar cycle-23 and the dominance of southern hemisphere in all the sunspot area data obtained from three different resources. The analysis also showed that there is a 5–6 months time delay in the activity levels of two hemispheres. Furthermore, the wavelet analysis carried on the same data sets showed several known periodicities (e.g., 170–180 days, 2.1 year) in the north–south difference of sunspot area data. The temporal occurrence of these periods is also the same in all the three data sets. These results could help in understanding the underlying mechanism of north–south asymmetry of solar activity.  相似文献   
123.
Abstract

Intervention experiments using the Coupled Forecast System model, version 2 (CFSv2), have been performed in which various Madden-Julian Oscillation (MJO) evolutions were added to the model’s internally generated heating: Slow Repeated Cycles, Slow Single Cycle, Fast Repeated Cycles, and Fast Single Cycle. In each experiment, one of these specified MJO evolutions of tropical diabatic heating was added in multiple ensemble reforecasts of boreal winter (1 November to 31 March for 31 winters: 1980–2010). Since in each experiment, multiple re-forecasts were made with the identical heating evolution added, predictable component analysis is used to identify modes with the highest signal-to-noise ratio. Traditional MJO-phase analysis of total model heating (dominated by internally generated heating) shows that the MJO-related heating structure compares well with heating estimated from observed fast and slow episodes; however, the model heating is larger by a factor of two. The evolution of Euro-Atlantic circulation regimes indicates a clear response due to the added heating, with a robust increase in the frequency of occurrence of the negative phase of the North Atlantic Oscillation (NAO?) after the heating crosses into the Pacific and a somewhat less robust increase in the positive phase of the NAO (NAO+) following Indian Ocean heating. In the Fast Cycle experiments, the model response is somewhat muted compared with the Slow Cycle experiments. The Scandinavian Blocking regime becomes more frequent prior to the NAO? regime. The two leading modes in the predictable component analysis of 300?hPa height (Z300), synoptic scale feedback (DZ300), and planetary wave diabatic heating in all experiments form an oscillatory pair with high statistical significance. The oscillatory pair represents the cyclic response to the particular MJO signal (Fast or Slow, Single, or Repeated Cycles) in each case. The period is about 64 days for the Slow Cycle and 36 days for the Fast Cycle, consistent with the imposed periods. The time series of one of the leading modes of Z300 is highly anti-correlated with the frequency of occurrence of the NAO– in the Repeated Cycle experiments. A clear cycle involving the Z300 and DZ300 leading modes is identified.  相似文献   
124.
珊瑚是记录海洋环境变化信息的载体之一,测定其U/Ca比值可重建海水温度或测定Th/U同位素比值可计算年龄重建海平面高度等.准确测定珊瑚中U、Th含量及同位素比值是提取所记载的海洋环境变化信息的前提,其难点在于高Ca基体分离和痕量U、Th富集纯化.基于此,本研究拟采用UTEVA树脂改进了一步富集分离珊瑚中U、Th的前处理...  相似文献   
125.
126.
This study presents a meta-analysis of radiocarbon ages for the environs of Göbekli Tepe – one of the oldest monumental structures worldwide – using cumulative probability functions to diachronically assess phases of geomorphodynamic activity as controlled by natural or anthropogenic drivers. We employ sediment cascades as a heuristic framework to study the complex responses of the geomorphological system to various triggers at local to supra-regional scales. Possible triggers include climatic variability as documented by supra-regional hydroclimatic proxy data, regional demographic trends, and local to regional socioeconomic developments such as the emergence of sedentism or the introduction and dispersal of livestock herding. Our results show that phases of intensified geomorphodynamic activity occurred between ca. 7.4–7.0 and 5.8–3.3 ka BP. These phases roughly coincide with phases of population growth in southern Turkey and climatic variations in Turkey and the Levant. The phase between ca. 5.8–3.3 ka BP also corresponds to the time when organized agriculture and the seeder plough were introduced. Also, the identified phases are in agreement with the general trend of varying geomorphodynamic activity in the Eastern Mediterranean as driven by human impact and climatic change. However, neither the Younger Dryas–Holocene transition nor the development of herding during the Pre-Pottery Neolithic left a clear signature. We demonstrate how the different depositional environments in the studied landscape compartments vary with respect to their spatiotemporal coverage and discuss challenges when trying to understand processes that once shaped landscapes of past societies. © 2020 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd  相似文献   
127.
Nearshore sandbars are characteristic features of sandy surf zones and have been observed with a variety of geometries in cross-shore (e.g. location) and longshore direction (e.g. planform). Although the behaviour of sandbars has been studied extensively on spatial scales up to kilometres and timescales up to years, it remains challenging to observe and explain their behaviour on larger spatial and temporal scales, especially in locations where coastline curvature can be prominent. In this paper, we study a data set with 38 years of coastal profiles, collected with alongshore intervals of 50 m, along the 34 km-long curved sandy shoreline of Sylt island, Germany. Sylt's shoreline has an orientation difference of ~20° between the northern and southern half of the island. We found that the decadal coastal profiles on the southern half show features of a low-tide terrace and a sandbar located further from the shoreline (~441 m). On the nothern half, the sandbar was located closer to the shoreline (~267 m) and was less pronounced, while the profiles show transverse bar and rip features. The alongshore planform also differed systematically and significantly along the two island sides. The sandbar on the southern island half, with alongshore periodicity on a larger length scale (~2240 m), was coupled out-of-phase to the shoreline, while no phase coupling was observed for the sandbar with periodicity on a shorter length scale (~670 m) on the northern half. We related the observed geometric differences of the sandbars to the difference in the local wave climate along Sylt, imposed by the shoreline shape. Our observations imply that small alongshore variations in wave climate, due to the increasing shoreline curvature on larger spatial scales, can lead to significant alongshore differences in the decadal evolution of coastal profiles, sandbars and shorelines. © 2020 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd  相似文献   
128.
The intensity of rainfall events with potential to cause landslides has varying temporal characteristics. In this study, the time at which the 72-h accumulated rainfall reached its maximum was used to standardize the period of rainfall measurement. The proposed standardization of the rainfall period was used in conjunction with the return level of rainfall intensity, obtained from intensity–duration–frequency curves, to investigate rainfall intensity anomalies associated with 10 hazardous rainfall events that triggered numerous landslides at the regional scale in Japan. These landslides included shallow landslides in volcanic and non-volcanic areas, as well as deep-seated landslides. The rainfall events that triggered the shallow landslides were divided into two types: downpours that repeatedly reached close to the 100-year return level within approximately 3–4 h, and accumulated rainfall that reached close to 200–400 mm over longer time intervals but within 72 h. Lithological differences seemed unrelated to the differences between the two types of shallow-landslide-triggering rainfall; however, precipitation >1000 mm was necessary to trigger deep-seated landslides. Although the characteristics of the hyetographs differed markedly among the landslide-triggering rainfall events, all the landslides could have been triggered when the mean rainfall intensity reached the 100-year rainfall level during the standardized period. Thus, the landslide trigger can be evaluated indirectly based on the increase in the return level of the mean rainfall intensity, which could provide a means for estimating the time of landslide occurrence.  相似文献   
129.
The ecosystem services provided by forests modulate runoff generation processes, nutrient cycling and water and energy exchange between soils, vegetation and atmosphere. Increasing atmospheric CO2 affects many linked aspects of forest and catchment function in ways we do not adequately understand. Global levels of atmospheric CO2 will be around 40% higher in 2050 than current levels, yet estimates of how water and solute fluxes in forested catchments will respond to increased CO2 are highly uncertain. The Free Air CO2 Enrichment (FACE) facility of the University of Birmingham's Institute of Forest Research (BIFoR) is the only FACE in mature deciduous forest. The site specializes in fundamental studies of the response of whole ecosystem patches of mature, deciduous, temperate woodland to elevated CO2 (eCO2). Here, we describe a dataset of hydrological parameters – seven weather parameters at each of three heights and four locations, shallow soil moisture and temperature, stream hydrology and CO2 enrichment – retrieved at high frequency from the BIFoR FACE catchment.  相似文献   
130.
Recent studies have highlighted the importance of understanding ecohydrological drought feedbacks to secure water resources under a changing climate and increasing anthropogenic impacts. In this study, we monitored and modelled feedbacks in the soil–plant-atmosphere continuum to the European drought summer 2018 and the following 2 years. The physically based, isotope-aided model EcH2O-iso was applied to generic vegetation plots (forest and grassland) in the lowland, groundwater-dominated research catchment Demnitzer Millcreek (NE Germany; 66 km2). We included, inter alia, soil water isotope data in the model calibration and quantified changing “blue” (groundwater recharge) and “green” (evapotranspiration) water fluxes and ages under each land use as the drought progressed. Novel plant xylem isotope data were excluded from calibration but were compared with simulated root uptake signatures in model validation. Results indicated inter-site differences in the dynamics of soil water storage and fluxes with contrasting water age both during the drought and the subsequent 2 years. Forest vegetation consistently showed a greater moisture stress, more rapid recovery and higher variability in root water uptake depths from a generally younger soil water storage. In contrast, the grassland site, which had more water-retentive soils, showed higher and older soil water storage and groundwater recharge fluxes. The damped storage and flux dynamics under grassland led to a slower return to younger water ages at depth. Such evidence-based and quantitative differences in ecohydrological feedbacks to drought stress in contrasting soil-vegetation units provide important insights into Critical Zone water cycling. This can help inform future progress in the monitoring, modelling and development of climate mitigation strategies in drought-sensitive lowlands.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号