首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   130篇
  免费   28篇
  国内免费   34篇
测绘学   2篇
大气科学   6篇
地球物理   22篇
地质学   129篇
海洋学   2篇
综合类   5篇
自然地理   26篇
  2023年   1篇
  2022年   3篇
  2021年   6篇
  2020年   2篇
  2019年   3篇
  2018年   3篇
  2017年   6篇
  2016年   7篇
  2015年   3篇
  2014年   8篇
  2013年   12篇
  2012年   4篇
  2011年   4篇
  2010年   8篇
  2009年   9篇
  2008年   7篇
  2007年   10篇
  2006年   12篇
  2005年   5篇
  2004年   8篇
  2003年   7篇
  2002年   5篇
  2001年   8篇
  2000年   8篇
  1999年   2篇
  1998年   6篇
  1997年   8篇
  1996年   5篇
  1995年   6篇
  1994年   8篇
  1991年   2篇
  1990年   3篇
  1989年   2篇
  1984年   1篇
排序方式: 共有192条查询结果,搜索用时 12 毫秒
11.
Zircons in basement rocks from the eastern Wyoming province (Black Hills, South Dakota, USA) have been analyzed by ion microprobe (SHRIMP) in order to determine precise ages of Archean tectonomagmatic events. In the northern Black Hills (NBH) near Nemo, Phanerozoic and Proterozoic (meta)sedimentary rocks are nonconformably underlain by Archean biotite–feldspar gneiss (BFG) and Little Elk gneissic granite (LEG), both of which intrude older schists. The Archean granitoid gneisses exhibit a pervasive NW–SE-trending fabric, whereas an earlier NE–SW-trending fabric occurs sporadically only in the BFG, which is intruded by the somewhat younger LEG. Zircon crystals obtained from the LEG and BFG exhibit double terminations, oscillatory zoning, and Th/U ratios of 0.6±0.3—thereby confirming a magmatic origin for both lithologies. In situ analysis of the most U–Pb concordant domains yields equivalent 207Pb/206Pb ages (upper intercept, U–Pb concordia) of 2559±6 and 2563±6 Ma (both ±2σ) for the LEG and BFG, respectively, which constrains a late Neoarchean age for sequential pulses of magmatism in the NBH. Unzoned (in BSE) patches of 2560 Ma zircon commonly truncate coeval zonation in the same crystals with no change in Th/U ratio, suggesting that deuteric, fluid-assisted recrystallization accompanied post-magmatic cooling. A xenocrystic core of magmatic zircon observed in one LEG zircon yields a concordant age of 2894±6 Ma (±2σ). This xenocryst represents the oldest crustal material reported thus far in the Black Hills. Whether this older zircon originated as unmelted residue of 2900 Ma crust that potentially underlies the Black Hills or as detritus derived from 2900 Ma crustal sources in the Wyoming province cannot be discerned. In the southern Black Hills (SBH), the peraluminous granite at Bear Mountain (BMG) of previously unknown age intrudes biotite–plagioclase schist. Zircon crystals from the BMG are highly metamict and altered, but locally preserve small domains suitable for in situ analysis. A U–Pb concordia upper intercept age of 2596±11 Ma (±2σ) obtained for zircon confirms both the late Neoarchean magmatic age of the BMG and a minimum age for the schist it intrudes. Taken together, these data indicate that the Neoarchean basement granitoids were emplaced at 2590–2600 Ma (SBH) and 2560 Ma (NBH), most likely in response to subduction associated with plate convergence (final assembly of supercontinent Kenorland?). In contrast, thin rims present on some LEG–BFG zircons exhibit strong U–Pb discordance, high common Pb, and low Th/U ratios—suggesting growth or modification under hydrothermal conditions, as previously suggested for similar zircons from SE Wyoming. The LEG–BFG zircon rims yield a nominal upper intercept date of 1940–2180 Ma, which may represent a composite of multiple rifting events known to have affected the Nemo area between 2480 and 1960 Ma. Together, these observations confirm the existence of a Paleoproterozoic rift margin along the easternmost Wyoming craton. Moreover, the 2480–1960 Ma time frame inferred for rifting in the Black Hills (Nemo area) corresponds closely to a 2450–2100 Ma time frame previously inferred for the fragmentation of supercontinent Kenorland.  相似文献   
12.
Subaerial unconformities are used widely for palaeoenvironmental and palaeogeographic reconstructions, sequence stratigraphy and petroleum reservoir assessments. Recognition and interpretation of these unconformities, particularly those with associated palaeosols, may be problematic in Lower and Middle Palaeozoic carbonate successions because of the collective effect of limited land plant development, superficial similarities between some pedogenic and marine features, and overprinting by later diagenesis. The isolated Judy Creek reef complex in the Lower Frasnian Swan Hills Formation in west‐central Alberta, Canada, contains two subaerial unconformities, R0.5 and R4, which formed as a consequence of relative sea‐level falls of at least regional scale. Deposits beneath these unconformities have distinctive palaeosol and palaeokarst features. The lower unconformity, R0.5, occurs at the top of a progradational reefal phase of stromatoporoid rudstones–floatstones and peloidal packstones–grainstones and has been recognized in at least one other isolated Swan Hills reef complex (Snipe Lake). Palaeosol–palaeokarst profiles beneath this unconformity extend as deep as ca 2 m below the unconformity. These profiles are characterized by the presence of small rhizoliths, laminar calcretes, ferroan dolomite glaebules, desiccation cracks, breccias, green shale and solution vugs. The upper unconformity, R4, occurs at the top of a backstepping phase of reef growth and has been correlated widely between isolated reefs and carbonate banks on both the western and eastern shelves of the Central Alberta Basin. Palaeosol–palaeokarst profiles, extending as deep as ca 9·5 m beneath the R4 unconformity, are distinguished by abundant, sub‐horizontal desiccation cracks filled with green shale, occurring in peloidal wackestones–packstones. Comparison of the R0.5 and R4 profiles indicates that the major intrinsic controls on the development and modification of the profiles are parent‐material lithology, particularly the prior degree of induration and particle size; the low topographic relief at the top of the reef interior; and limited vegetation of the exposed reef top due to unfavourable growth conditions and geographic isolation. In addition to climate, the major extrinsic controls are the extent of relative sea‐level fall, estimated to be 2·5 to 3 m and 13 to 14 m associated with the R0.5 and R4 unconformities, respectively, and the degree of shoreface erosion during the ensuing marine transgression, estimated to be up to 3 m. This study highlights the complex interplay of mainly physical and chemical processes influencing the formation of subaerial unconformities in carbonate environments during the Devonian, before major evolutionary innovations among vascular land plants led to more intense pedogenesis.  相似文献   
13.
付茜 《江苏地质》2017,41(2):218-223
北京西山下苇甸剖面崮山组和凤山组地层分别属于寒武系第三统和芙蓉统。其中,崮山组发育浅水叠层石生物丘,凤山组发育浅水叠层石生物层,二者都发育深水环境碳酸盐泥丘,代表了碳酸盐岩沉积的多样性;大量存在的不同类型的竹叶状砾屑灰岩,代表了“风暴海”时期特殊的沉积组构。特殊沉积组构作为寒武纪贫乏骨骼风暴海后中奥陶世生物大辐射前的特殊现象,为研究较深水背景下微生物造礁作用提供了典型的岩石记录,同时也代表了这一特殊时期的沉积作用样式  相似文献   
14.
北京西山青白口—下苇甸一带印支期侵入活动特征   总被引:1,自引:0,他引:1  
本文根据青白口─下苇甸一带发育的基性→中性→酸性岩脉(床)的变形与围岩一致;变质作用特点与发育于石炭─二叠系及三叠系双泉组岩石中的变质作用特点相似;在下苇甸穹隆中发育的辉长岩中获得了K─Ar全岩稀释法年龄229Ma,证实这套岩脉(床)是印支期岩浆侵入活动产物,并对其地质特征和岩石地球化学特征进行了讨论。  相似文献   
15.
ABSTRACT Thermobarometric studies on various granulite facies areas along the Prydz Bay coast, East Antarctica (73°-79°E, 68°-70°S), show that, at around 1100 Ma, during a late Proterozoic orogeny, the rocks of the Larsemann Hills suffered a lower pressure metamorphic peak than the surrounding areas. Along the Prydz Bay coast, the rocks affected by this event include parts of the Vestfold Hills block plus all of the Rauer Group, the Larsemann Hills and the Munro Kerr Mountains. The dykes in the south-west corner of the Vestfold Hills were recrystallized during this event with little deformation at temperatures not quite as high as in the areas further south-west (650°C, 6.5 kbar) (Collerson et al., 1983), the Rauer Group was metamorphosed at 800°C and 7.5 kbar (Harley, 1987a), the Larsemann Hills at 750°C and 4.5 kbar, and the Munro Kerr Mountains probably at around 850°C and 5 kbar. Retrograde equilibration in the different areas occurred during decompression to about 10 km depth in all areas, followed by isobaric cooling at this depth. This paper shows that the peak metamorphism in the Larsemann Hills occurred at a pressure which is too low to have been the consequence of thermal relaxation of overthickened crust with normal mantle heat flow. Although other areas in Prydz Bay were metamorphosed at sufficiently high pressures so that their decompression paths are not inconsistent with a continental collision model, the inferred pre-metamorphic peak histories and the requirement of consistency with the Larsemann Hills, make it unlikely that collision followed by erosion-driven decompression is an appropriate model. We suggest that the thermal regime of the crust in the Larsemann Hills region was controlled by a perturbation in the asthenosphere, with magma invasion of the crust. We suggest that the 500 Ma event, represented in Prydz Bay by granitic outcrops at Landing Bluff and by several K/Ar ages from the Larsemann Hills area, was responsible for the final excavation of the terrane.  相似文献   
16.
We present a relative sea-level (RSL) history, constrained by AMS radiocarbon-dated marine-freshwater transitions in isolation basins from a site adjacent to the Lambert Glacier, East Antarctica. The RSL data suggest an initial ice retreat between c. 15,370 and 12,660 cal yr B.P.. Within this period, meltwater pulse IA (mwp IA, between c. 14,600-14,200 and 14,100-13,700 cal yr B.P.) occurred; an exceptionally large ice melting event, inferred from far-field sea-level records. The RSL curve shows a pronounced highstand of approximately 8 m between c. 7570-7270 and 7250-6950 cal yr B.P. that is consistent with the timing of the RSL highstand in the nearby Vestfold Hills. This is followed by a fall in RSL to the present. In contrast to previous findings, the isolation of the lakes in the Larsemann Hills postdates the isolation of lakes with similar sill heights in the Vestfold Hills. An increase in RSL fall during the late Holocene may record a decline in the rate of isostatic uplift in the Larsemann Hills between c. 7250-6950 and 2847-2509 cal yr B.P., that occurred in response to a documented mid-Holocene glacier readvance followed by a late-Holocene retreat.  相似文献   
17.
Panseok Yang  David Pattison 《Lithos》2006,88(1-4):233-253
The paragenesis of monazite in metapelitic rocks from the contact aureole of the Harney Peak Granite, Black Hills, South Dakota, was investigated using zoning patterns of monazite and garnet, electron microprobe dating of monazite, bulk-rock compositions, and major phase mineral equilibria. The area is characterized by low-pressure and high-temperature metamorphism with metamorphic zones ranging from garnet to sillimanite zones. Garnet porphyroblasts containing euhedral Y annuli are observed from the garnet to sillimanite zones. Although major phase mineral equilibria predict resorption of garnet at the staurolite isograd and regrowth at the andalusite isograd, textural and mass balance analyses suggest that the formation of the Y annuli is not related to the resorption-and-regrowth of garnet having formed instead during garnet growth in the garnet zone. Monazite grains in Black Hills pelites were divided into two generations on the basis of zoning patterns of Y and U: monazite 1 with low-Y and -U and monazite 2 with high-Y and -U. Monazite 1 occurs in the garnet zone and persists into the sillimanite zone as cores shielded by monazite 2 which starts to form in the andalusite zone. Pelites containing garnet porphyroblasts with Y annuli and monazite 1 with patchy Th zoning are more calcic than those with garnet with no Y annuli and monazite with concentric Th zoning. Monazite 1 is attributed to breakdown of allanite in the garnet zone, additionally giving rise to the Y annuli observed in garnet. Monazite 2 grows in the andalusite zone, probably at the expense of garnet and monazite 1 in the andalusite and sillimanite zones. The ages of the two different generations of monazite are within the precision of chemical dating of electron microprobe. The electron microprobe ages of all monazites from the Black Hills show a single ca. 1713 Ma population, close to the intrusion age of the Harney Peak Granite (1715 Ma). This study demonstrates that Y zoning in garnet and monazite are critical to the interpretation of monazite petrogenesis and therefore monazite ages.  相似文献   
18.
Tectonic slices and lenses of eclogite within mafic and ultramafic rocks of the Early Cretaceous–Eocene Naga Hills ophiolite were studied to constrain the physical conditions of eastward subduction of the Indian plate under the Burma microplate and convergence rate prior to the India–Eurasia collision. Some of the lenses are composed of eclogite, garnet-blueschist, glaucophanite and greenschist from core to margin, representing a retrograde hydrothermal alteration sequence. Barroisite, garnet, omphacite and epidote with minor chlorite, phengite, rutile and quartz constitute the peak metamorphic assemblage. In eclogite and garnet-blueschist, garnet shows an increase in Mg and Fe and decrease in Mn from core to rim. In chlorite in eclogite, Mg increases from core to rim. Inclusions of epidote, glaucophane, omphacite and quartz in garnet represent the pre-peak assemblage. Glaucophane also occurs profusely at the rims of barroisite. The matrix glaucophane and epidote represent the post-peak assemblage. The Fe3+ content of garnet-hosted omphacite is higher than that of matrix omphacite, and Fe3+ increases from core to rim in matrix glaucophane. Albite occurs in late stage veins. P – T pseudosection analysis indicates that the Naga Hills eclogites followed a clockwise P – T path with prograde metamorphism beginning at ∼1.3 GPa/525 °C and peaking at 1.7–2.0 GPa/580–610 °C, and subsequent retrogression to ∼1.1 GPa/540 °C. A comparison of these P – T conditions with numerical thermal models of plate subduction indicates that the Naga Hills eclogites probably formed near the top of the subducting crust with convergence rates of ∼ 55–100 km Myr−1, consistent with high pre-collision convergence rates between India and Eurasia.  相似文献   
19.
The Red Hills peridotite in the Dun Mountain ophiolite of SouthIsland, New Zealand, is assumed to have been produced in a paleo-mid-oceanridge tectonic setting. The peridotite is composed mostly ofharzburgite and dunite, which represent residual mantle andthe Moho transition zone (MTZ), respectively. Dunite channelswithin harzburgite blocks of various scales represent the MTZcomponent. Plagioclase- and clinopyroxene-bearing dunites occursporadically within common dunites. These dunites representproducts of melt–wall-rock interaction. Chondrite-normalizedrare earth element (REE) patterns of MTZ clinopyroxenes showa wide compositional range. Clinopyroxenes in plagioclase dunitesare extremely depleted in light REE (LREE) ([Lu/La]N >100),and are comparable with clinopyroxenes in abyssal peridotitesfrom normal mid-ocean ridges. Interstitial clinopyroxenes inthe common dunite have flatter patterns ([Lu/La]N 2) comparablewith those for dunite in the Oman ophiolite. Clinopyroxenesin the lower part of the residual mantle harzburgites are evenmore strongly depleted in LREE ([Lu/La]N = 100–1000) thanare mid-ocean ridge peridotites, and rival the most depletedabyssal clinopyroxenes reported from the Bouvet hotspot. Incontrast, those in the uppermost residual mantle harzburgiteand harzburgite blocks in the MTZ are less LREE depleted ([Lu/La]N= 10–100), and are similar to those in plagioclase dunite.Clinopyroxenes in the clinopyroxene dunite in the MTZ are similarto those reported from mid-ocean ridge basalt (MORB) cumulates,and clinopyroxenes in the gabbroic rocks have compositions similarto those reported from MORB. Strong LREE and middle REE (MREE)depletion in clinopyroxenes in the harzburgite suggests thatthe harzburgites are residues of two-stage fractional melting,which operated initially in the garnet field, and subsequentlycontinued in the spinel lherzolite field. The early stage meltingproduced the depleted harzburgite. The later stage melting wasresponsible for the gabbroic rocks and dunite. Strongly LREE–MREE-depletedclinopyroxene in the lower harzburgite and HREE-enriched clinopyroxenein the upper harzburgite and plagioclase dunite were formedby later reactive melt migration occurring in the harzburgite. KEY WORDS: clinopyroxene REE geochemistry; Dun Mountain ophiolite; Moho transition zone; orogenic peridotite; Red Hills  相似文献   
20.
We present 24 40Ar/39Ar ages for the youngest volcanic products from the Alban Hills volcanic district (Rome). Combined with petrological data on these products, we have attempted to define the chronology of the most recent phase of activity and to investigate the magma evolution of this volcanic district. The early, mainly explosive activity of the Alban Hills spanned the interval from 561±1 to 351±3 ka. After approximately 50-kyr of dormancy, a mainly effusive phase of activity took place, accompanied by the strombolian activity of a small central edifice (Monte delle Faete). This second phase of activity spanned the interval 308±2 to 250±1 ka. After another dormancy period of approximately 50-kyr, a new, hydromagmatic phase of activity started at 200 ka at several centers located to the southwest of the Monte delle Faete edifice. After an initial recurrence period of approximately 50-kyr, which also characterized this new phase of activity, the longest dormancy period (approximately 80-kyr) in the history of the volcanic district preceded the start of the activity of the Albano and Giuturna centers at 70±1 ka. Results of our study suggest a quasi-continuous magmatic activity feeding hydromagmatic centers with a new acme of volcanism since around 70 ka. Based on data presented in this paper, we argue that the Alban Hills should not be considered an extinct volcanic district and a detailed re-assessment of the volcanic hazard for the area of Rome is in order. Published online: 4 April 2003 Editorial responsibility: J. Donnelly-Nolan  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号