排序方式: 共有68条查询结果,搜索用时 15 毫秒
61.
To try to resolve the conflicts surrounding the influence of salts on frost weathering, chalk cubes were immersed, separately, in solutions of sodium chloride, sodium sulphate, and magnesium sulphate at concentrations of 5·5 per cent and 12·5 per cent, in a mixed solution of sodium chloride and sodium sulphate, and in distilled water. The cubes were subjected to six freeze-thaw cycles with temperatures ranging from either +15 to — 10°C or + 15 to — 30°C. The results confirm that frost weathering can be enhanced by the presence of certain salts, but the degree of enhancement depends both on the concentration and type of salt and on the intensity of the freeze-thaw regime. Some, but not all, of the results can be explained by the phase changes that occur during the freezing of the salt solutions. 相似文献
62.
Abdelilah Dekayir Marc Amouric Juan Olives Claude Parron Abdelilah Nadiri Abdelkader Chergui M.Abdeljalil El Hajraoui 《Comptes Rendus Geoscience》2004,336(12):1061-1070
In Volubilis, Roman mosaics are very beautiful and reveal, from the bottom to the surface, three layers: (i) ‘hedgehog’ layer, (ii) coarse grain mortar layer (rudus + nucleus) and (iii) tesselatum. Mineralogical analysis of coarse grain mortar sampled in Flavius Germanus mosaic shows that it consisted of quartz and calcite, with some feldspar and probably mica and dolomite. Fine-grained mortar in tesselatum is made from a mixture of calcite and quartz only. Limestone tesserae (white, pink and brown) show petrographic facies that change from micritic to oolithic limestone. Conversely, black and brick red tesserae are respectively made of marble, red sandstone and from fire clay. Other colours as yellow, blue, green and grey are obtained from artificial glass with different chemical compositions. To cite this article: A. Dekayir et al., C. R. Geoscience 336 (2004). 相似文献
63.
The value of high-resolution nutrient monitoring: A case study of the River Frome, Dorset, UK 总被引:1,自引:0,他引:1
The River Frome was sampled at sub-daily sampling interval, with additional storm sampling, through an annual cycle. Samples were analysed for total phosphorus (TP), soluble reactive phosphorus (SRP), total oxidisable nitrogen (TON) and dissolved reactive silicon (Si). The resulting data set was artificially decimated to mimic sampling frequencies from 12 h to monthly time interval. Monthly sampling interval resulted in significant errors in the estimated annual TP and SRP load of up to 35% and 28% respectively, and the resulting data sets were insufficient to observe peaks in P concentration in response to storm events. Weekly sampling reduced the maximum percentage errors in annual load estimate to 15.4% and 6.5%. TON and silicon concentrations were less variable with changing river flow, and monthly sampling was sufficient to predict annual load estimates to within 10%. However, to investigate within-river nutrient dynamics and behaviour, it is suggested that a weekly sampling interval would be the minimum frequency required for TON and Si studies, and daily sampling would be a minimum requirement to adequately investigate phosphorus dynamics. The loss in nutrient-concentration signal due to reduced sampling interval is presented. Hysteresis in the nutrient concentration/flow relationships for all 32 storm events during the study period were modelled and seasonal patterns discussed to infer nutrient sources and behaviour. The high-resolution monitoring in this study identified, for the first time, major peaks in phosphorus concentration in winter that coincide with sudden falls in air temperature, and was associated with biofilm breakdown. This study has shown that to understand complex catchment nutrient processes, accurately quantify nutrient exports from catchments, and observe changes in water quality as a result of nutrient mitigation efforts over time, it is vital that the newly emerging field-based automated sampler/analyzer technologies begin to be deployed, to allow for routine high-resolution monitoring of our rivers in the future. 相似文献
64.
The Edda Field, which was discovered in 1972, is located in the southern part of the Norwegian Sector of the North Sea. As in the nearby Ekofisk Field, chalk reservoir in the Danian (Lower Paleocene) and Maastrichtian (Upper Cretaceous) contain oil which originated in the Upper Jurassic organic rich shale sequence. A 15 slots drilling-production platform was installed on the basis of the results of 3 exploration appraisal wells. Seven producer wells were drilled and completed in 1979 and a production peak of about 33000 BOPD was reached in January 1980. All the development wells encountered less yield than expected and the 3 wells drilled on the southern flank of the structure were dry. Most of the characteristics of the chalk reservoir were known at that time but the existence of a pre-Maastrichtian paleo-relief in that area had not yet been established. This paleo-feature, the Lindesnes Ridge, strongly influenced the distribution and characteristics of the reservoir. Variation in initial porosity is the result of changes in sedimentation mode and rate as well as differential early cementation and mechanical compaction over the paleo-high. Differential porosity preservation is partly due to progressive infill of the trap by hydrocarbons but, as in most chalk fields, overpressure in the porous chalk layers was an important prerequisite. 相似文献
65.
Christian Hübscher Mu'ayyad Al Hseinat Matthias Schneider Christian Betzler 《Sedimentology》2019,66(4):1341-1360
Based on integration of seismic reflection and well data analysis this study examines two major contourite systems that developed during the late Cretaceous in the southern Baltic Sea. The evolution of these Chalk Sea contourite systems between the Kattegat and the southern Baltic Sea started when Turonian to Campanian inversion tectonics overprinted the rather flat sea floor of the epeiric Chalk Sea. The Tornquist Zone and adjacent smaller blocks were uplifted and formed elongated obstacles that influenced the bottom currents. As a consequence of the inversion, the sea floor west of the Tornquist Zone tilted towards the north‐east, creating an asymmetrical sub‐basin with a steep marginal slope in the north‐east and a gentle dipping slope in the south‐west. A south‐east directed contour current emerged in the Coniacian or Santonian along the south‐western basin margin, creating contourite channels and drifts. The previously studied contourite system offshore Stevns Klint is part of this system. A second, deeper and north‐west directed counter‐flow emerged along and parallel to the Tornquist Zone in the later Campanian, but was strongest in the Maastrichtian. This bottom current moderated the evolution of a drift‐moat system adjacent to the elevated Tornquist Zone. The near surface Alnarp Valley in Scania represents the Danian palaeo‐moat that linked the Pomeranian Bay with the Kattegat. The previously studied contourite system in the Kattegat represents the north‐western prolongation of this system. This study links previous observations from the Kattegat and offshore Stevns Klint to the here inferred two currents, a more shallow, south‐east directed and a deeper, north‐west directed flow. 相似文献
66.
Andrew J. Newell Mark A. Woods Andrew R. Farrant Helen Smith Richard B. Haslam 《Proceedings of the Geologists' Association. Geologists' Association》2018,129(5):610-628
A series of six thickness maps created at a formation scale for the Chalk of the Southern and Transitional Chalk provinces of SE England reinforce the difficulty in determining the controls on Chalk deposition. However, at the broad scale, they do appear to show that thickness patterns in the Cenomanian to Turonian chalks of the West Melbury Marly Chalk, the Zig Zag Chalk and the Holywell Nodular Chalk show correspondence with the underlying Mesozoic extensional basin structure. The major exception to this is the south Dorset area which was uplifted in the Early Cretaceous as an eastern extension to the Cornubian Ridge. The younger New Pit Chalk and Lewes Nodular Chalk show a switch toward thicker successions on the London Platform and thinner, more uniform successions across the Mesozoic basins to the south. This change may indicate some initial basin inversion starting in the mid Turonian which caused a shift in the main locus of Chalk deposition toward East Anglia. The work potentially suggests multiple control-modes shaping the geometry of Chalk deposits, involving an interplay of: 1) long-lived basin-defining faults and structural blocks acting to shape large-scale thickness trends through differential compaction and interaction with relative sea level change; 2) smaller scale structures that may function to more effectively dissipate stress created by intra-Cretaceous tectonic events, producing more localised/sub-regional thickness and facies variations; 3) early basin inversion reflecting the broader basin-scale response to intra-Cretaceous tectonics, potentially responsible for regional shifts in patterns of sedimentation. 相似文献
67.
Cryoturbated Upper Chalk is a dichotomous porous medium wherein the intra‐fragment porosity provides water storage and the inter‐fragment porosity provides potential pathways for relatively rapid flow near saturation. Chloride tracer movement through 43 cm long and 45 cm diameter undisturbed chalk columns was studied at water application rates of 0·3, 1·0, and 1·5 cm h?1. Microscale heterogeneity in effluent was recorded using a grid collection system consisting of 98 funnel‐shaped cells each 3·5 cm in diameter. The total porosity of the columns was 0·47 ± 0·02 m3 m?3, approximately 13% of pores were ≥ 15 µm diameter, and the saturated hydraulic conductivity was 12·66 ± 1·31 m day?1. Although the column remained unsaturated during the leaching even at all application rates, proportionate flow through macropores increased as the application rate decreased. The number of dry cells (with 0 ml of effluent) increased as application rate decreased. Half of the leachate was collected from 15, 19 and 22 cells at 0·3, 1·0, 1·5 cm h?1 application rates respectively. Similar breakthrough curves (BTCs) were obtained at all three application rates when plotted as a function of cumulative drainage, but they were distinctly different when plotted as a function of time. The BTCs indicate that the columns have similar drainage requirement irrespective of application rates, as the rise to the maxima (C/Co) is almost similar. However, the time required to achieve that leaching requirement varies with application rates, and residence time was less in the case of a higher application rate. A two‐region convection–dispersion model was used to describe the BTCs and fitted well (r2 = 0·97–0·99). There was a linear relationship between dispersion coefficient and pore water velocity (correlation coefficient r = 0·95). The results demonstrate the microscale heterogeneity of hydrodynamic properties in the Upper Chalk. Copyright © 2007 John Wiley & Sons, Ltd. 相似文献
68.
Jessica Saïag Pierre‐Yves Collin Jean‐Pierre Sizun Frdric Herbst Ophlie Faÿ‐Gomord Carmela Chateau Smith Bruno Caline ric Lasseur 《Sedimentology》2019,66(7):2976-3007
Microtexture describes the type of particles and their arrangement in matrix samples at scanning electron microscopy scale. Although a microtexture classification exists for micritic limestone, it cannot be directly applied to chalk. This study therefore proposes a classification of chalk microtextures and discusses the origin of microtexture variability. Chalk was sampled at thirteen spatio‐temporal locations along the coastline of northern France (Cenomanian–Santonian). Four criteria are defined to describe, characterize and determine chalk matrix microtexture: (i) mineralogical content; (ii) biogenic fraction; (iii) micritic fraction; and (iv) cement fraction. From these criteria, two major groups are defined: Pure Chalk Microtexture Group, with seven classes, and Impure Chalk Microtexture Group, divided into two subgroups: Argillaceous Microtexture with four classes and Siliceous Microtexture with two classes. Microtexture variability is related both to initial sedimentation and to diagenesis. Sedimentological conditions (for example, climate and distance from shore) affect chalk composition (carbonate content and type of insoluble particles), thus influencing microtexture. Changes in Pure Chalk Microtexture are the result of increasing diagenetic intensity. This classification can also be used to characterize the microtexture of subsurface chalk reservoirs. Reservoir quality depends on the petrophysical and mechanical properties of reservoir rocks, which can be better understood by exploring their sedimentary and diagenetic history, revealed by the study of chalk microtexture variability. 相似文献