首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2736篇
  免费   478篇
  国内免费   1101篇
测绘学   32篇
大气科学   150篇
地球物理   473篇
地质学   2951篇
海洋学   146篇
天文学   17篇
综合类   80篇
自然地理   466篇
  2024年   23篇
  2023年   53篇
  2022年   92篇
  2021年   107篇
  2020年   146篇
  2019年   164篇
  2018年   139篇
  2017年   161篇
  2016年   142篇
  2015年   159篇
  2014年   212篇
  2013年   221篇
  2012年   207篇
  2011年   172篇
  2010年   132篇
  2009年   190篇
  2008年   194篇
  2007年   209篇
  2006年   254篇
  2005年   179篇
  2004年   144篇
  2003年   129篇
  2002年   133篇
  2001年   80篇
  2000年   96篇
  1999年   96篇
  1998年   91篇
  1997年   65篇
  1996年   65篇
  1995年   58篇
  1994年   43篇
  1993年   35篇
  1992年   28篇
  1991年   19篇
  1990年   21篇
  1989年   14篇
  1988年   11篇
  1987年   11篇
  1986年   2篇
  1985年   3篇
  1984年   3篇
  1983年   4篇
  1980年   1篇
  1979年   4篇
  1978年   1篇
  1954年   2篇
排序方式: 共有4315条查询结果,搜索用时 296 毫秒
41.
The history of variations in water level of Lake Constance, as reconstructed from sediment and pollen analysis of a sediment sequence from the archaeological site of Arbon-Bleiche 3, shows an abrupt rise in lake level dendrochronologically dated to 5375 yr ago (5320 yr relative to AD 1950). This event, paralleled by the destruction of the Neolithic village by fire, provoked the abandonment of this prehistoric lake-shore location established in the former shallow bay of Arbon-Bleiche, and was the last of a series of three episodes of successively higher lake level, the first occurring at 5600-5500 cal yr B.P. The dendrochronologically dated rise event was synchronous with an abrupt increase in atmospheric 14C. This supports the hypothesis of an abrupt climate change forced by varying solar activity. Moreover, the three successive episodes of higher lake level between 5600 and 5300 cal yr B.P. at Arbon-Bleiche 3 coincided with climatic cooling and/or changes in moisture conditions in various regions of both hemispheres. This period corresponds to the mid-Holocene climate transition (onset of the Neoglaciation) and suggests inter-hemispheric linkages for the climate variations recorded at Arbon-Bleiche 3. This mid-Holocene climate reversal may have resulted from complex interactions between changes in orbital forcing, ocean circulation and solar activity. Finally, despite different seasonal hydrological regimes, the similarities between lake-level records from Lake Constance and from Jurassian lakes over the mid-Holocene period point to time scale as a crucial factor in considering the possible impact of climate change on environments.  相似文献   
42.
More than 1400 km of two-dimensional seismic data were used to understand the geometries and structural evolution along the western margin of the Girardot Basin in the Upper Magdalena Valley. Horizons are calibrated against 50 wells and surface geological data (450 km of traverses). At the surface, low-angle dipping Miocene strata cover the central and eastern margins. The western margin is dominated by a series of en echelon synclines that expose Cretaceous–Oligocene strata. Most synclines are NNE–NE trending, whereas bounding thrusts are mainly NS oriented. Syncline margins are associated mostly with west-verging fold belts. These thrusts started deformation as early as the Eocene but were moderately to strongly reactivated during the Andean phase. The Girardot Basin fill records at least four stratigraphic sequences limited by unconformities. Several periods of structural deformation and uplifting and subsidence have affected the area. An early Tertiary deformation event is truncated by an Eocene unconformity along the western margin of the Girardot Basin. An Early Oligocene–Early Miocene folding and faulting event underlies the Miocene unconformity along the northern and eastern margin of the Girardot Basin. Finally, the Late Miocene–Pliocene Andean deformation folds and erodes the strata along the margins of the basin against the Central and Eastern Cordilleras.  相似文献   
43.
At the eastern margin of the Bohemian Massif (Variscan belt of Central Europe), large bodies of felsic granulite preserve mineral assemblages and structures developed during the early stages of exhumation of the orogenic lower continental crust within the Moldanubian orogenic root. The development of an early steep fabric is associated with east–west-oriented compression and vertical extrusion of the high-grade rocks into higher crustal levels. The high-pressure mineral assemblage Grt-Ky-Kfs-Pl-Qtz-Liq corresponds to metamorphic pressures of ∼18 kbar at ∼850 °C, which are minimum estimates, whereas crystallization of biotite occurred at 13 kbar and ∼790 °C during decompression with slight cooling. The late stages of the granulite exhumation were associated with lateral spreading of associated high-grade rocks over a middle crustal unit at ∼4 kbar and ∼700 °C, as estimated from accompanying cordierite-bearing gneisses. The internal structure of a contemporaneously intruded syenite is coherent with late structures developed in felsic granulites and surrounding gneisses, and the magma only locally explored the early subvertical fabric of the felsic granulite during emplacement. Consequently, the emplacement age of the syenite provides an independent constraint on the timing of the final stages of exhumation and allows calculation of exhumation and cooling rates, which for this part of the Variscan orogenic root are 2.9–3.5 mm yr−1 and 7–9.4 °C Myr−1, respectively. The final part of the temperature evolution shows very rapid cooling, which is interpreted as the result of juxtaposition of hot high-grade rocks with a cold upper-crustal lid.  相似文献   
44.
The Sakarya River is one of the largest rivers in Turkey and is fed mainly from Sakaryabaşı springs. The Sakaryabaşı springs are located in the Central Anatolia and issue from confined/semi-confined karst having a thermal component and therefore, having quite different hydrogeological characteristics as compared to the Taurus Karst region, a typical example of the Mediterranean type of karst. The karstic carbonate rocks that form the groundwater reservoir are overlain by a thick semi-pervious overburden of mainly clastics of Neogene age. Tectonics is the major factor controlling the occurrence of the karst springs in the area where topography is rather flat. This study aimed at explaining the occurrence and movement of the karst groundwater within the system by use of hydrogeological, chemical, and isotopic tools. Isotopic composition of the waters revealed that all waters in the region are of meteoric origin and the thermal component is due to deep circulation. The catchment area of the hydrogeological system extends to the south and groundwater movement is towards the outlets, which are in a depression along a major fault. The movement of the groundwater, based on analysis of remotely sensed images, is controlled mainly by structural elements.  相似文献   
45.
The TRANSALP consortium, comprising institutions from Italy, Austria and Germany, carried out deep seismic reflection measurements in the Eastern Alps between Munich and Venice in 1998, 1999 and 2001. In order to complement each other in resolution and depth range, the Vibroseis technique was combined with simultaneous explosive source measurements. Additionally, passive cross-line recording provided three-dimensional control and alternative north–south sections. Profits were obtained by the combination of the three methods in sectors or depths where one method alone was less successful.The TRANSALP sections clearly image a thin-skinned wedge of tectonic nappes at the northern Alpine front zone, unexpected graben or half-graben structures within the European basement, and, thick-skinned back-thrusting in the southern frontal zone beneath the Dolomite Mountains. A bi-vergent structure at crustal scale is directed from the Alpine axis to the external parts. The Tauern Window obviously forms the hanging wall ramp anticline above a southward dipping, deep reaching reflection pattern interpreted as a tectonic ramp along which the Penninic units of the Tauern Window have been up-thrusted.The upper crystalline crust appears generally transparent. The lower crust in the European domain is characterized by a 6–7 km thick laminated structure. On the Adriatic side the lower crust displays a much thicker or twofold reflective pattern. The crustal root at about 55 km depth is shifted around 50 km to the south with respect to the main Alpine crest.  相似文献   
46.
The Pacific plate and the Philippine Sea plate overlap and subduct underneath the Kanto region, central Japan, causing complex seismic activities in the upper mantle. In this research, we used a map selection tool with a graphic display to create a data set for earthquakes caused by the subducting motion of the Philippine Sea plate that are easily determined. As a result, we determined that there are at least four earthquake groups present in the upper mantle above the Pacific plate. Major seismic activity (Group 1) has been observed throughout the Kanto region and is considered to originate in the uppermost part of mantle in the subducted Philippine Sea plate, judging from the formation of the focal region and comparison with the 3D structure of seismic velocity. The focal mechanism of these earthquakes is characterized by the down-dip compression. A second earthquake layer characterized by down-dip extension (Group 2), below the earthquakes in this group, is also noted. The focal region for those earthquakes is considered to be located at the lower part of the slab mantle, and the Pacific plate located directly below is considered to influence the activity. Earthquakes located at the shallowest part (Group 3) form a few clusters distributed directly above the Group 1 focal region. Judging from the characteristics of later phases in these earthquakes and comparing against the 3D structure of seismic velocity, the focal regions for the earthquakes are considered to be located near the upper surface of the slab. Another earthquake group (Group 4) originates further below Group 2; it is difficult to consider these earthquakes within a single slab. The seismic activities representing the upper area of the Philippine Sea plate are Group 3. This paper proposes a slab geometry model that is substantially different from conventional models by strictly differentiating the groups.  相似文献   
47.
A.S. Gaab  M. Jank  U. Poller  W. Todt 《Lithos》2006,87(3-4):261-275
Magmatic protoliths of Ordovician age have been identified in the metamorphic rocks of the Muráñ Gneiss Complex, Veporic Unit (Central Western Carpathians). Vapor digestion single zircon U–Pb dating yields an intrusion age of 464 ± 35 Ma (upper intercept) for the granite protolith. A lower intercept age of 88 ± 40 Ma records amphibolite-facies metamorphic overprint in the Cretaceous, during the Alpine orogeny. Geochemical and isotopic data suggest crustal origin of the orthogneiss. Ndinitial are between − 2.6 and − 5.0 and TDMNd between 1.3 and 1.5 Ga (two-step approach). 87Sr / 86Srinitial ratios vary between 0.7247 and 0.7120, and a steep REE pattern further constrains the crustal affinity of these rocks. Associated amphibolite bodies have Ndinitial values of 6.5, 87Sr / 86Srinitial ratio of 0.7017, and a flat REE pattern. They are interpreted as MORB derived metabasites. Whole-rock Pb isotope analyses define a linear array in a 206Pb / 204Pb vs. 207Pb / 204Pb diagram with an age of ca. 134 Ma, consistent with intense Alpine metamorphism and deformation.

These basement rocks of the Central Western Carpathians are interpreted as Ordovician magmatic rocks intruded at an active margin of Gondwana. They represent the eastern prolongation of Cambro–Ordovician units of the European Variscides, which were part of the peri-Gondwana superterrane and accreted to Laurussia during the Variscan orogeny. Variscan metamorphic overprint is not recorded by the isotopic data of the Muráñ Gneiss Complex. Alpine metamorphism is the most dominant overprint.  相似文献   

48.
The future availability and sustainability of fresh groundwater resources in the South West district of the national capital territory (NCT) Delhi, India, have been projected. Due to a rapid decline in groundwater level and quality, the district has been required by the Government of India to regulate development of groundwater resources. Shallow groundwater is mostly saline and water resources in the area are limited. The methodology applied here involves microzonation of the district in terms of thickness of fresh groundwater and then quantification of present and future availability of freshwater in different freshwater zones, including tentative timescales. The calculation method has been aided by data on historic trends in water level at representative groundwater monitoring stations, located either in fresh groundwater zones or near to them. It is estimated that the presently available 481 million m3 of resources will be reduced to 374 million m3 by year 2007 and to 303 million m3 by the year 2012, and by the year 2022 the district will have only 176 million m3 of available fresh groundwater resources.  相似文献   
49.
A conceptual hydrogeological model of the Viterbo thermal area (central Italy) has been developed. Though numerous studies have been conducted on its geological, geochemical and geothermal features, there is no generalized picture defining the origin and yield of the hydrothermal system. These latter aspects have therefore become the objectives of this research, which is based on new hydrogeological and geochemical investigations. The geological setting results in the coexistence of overlapped interacting aquifers. The shallow volcanic aquifer, characterized by fresh waters, is fed from the area around the Cimini Mountains and is limited at its base by the semiconfining marly-calcareous-arenaceous complex and low-permeability clays. To the west of Viterbo, vertical upflows of thermal waters of the sulphate-chloride-alkaline-earth type with higher gas contents, are due to the locally uplifted carbonate reservoir, the reduced thickness of the semiconfining layer and the high local geothermal gradient. The hot waters (30–60°C) are the result of deep circulation within the carbonate rocks (0.5–1.8 km) and have the same recharge area as the volcanic aquifer. The upward flow in the Viterbo thermal area is at least 0.1 m3/s. This flow feeds springs and deep wells, also recharging the volcanic aquifer from below.  相似文献   
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号