首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4730篇
  免费   942篇
  国内免费   2154篇
测绘学   77篇
大气科学   1544篇
地球物理   801篇
地质学   2303篇
海洋学   2304篇
天文学   36篇
综合类   228篇
自然地理   533篇
  2024年   30篇
  2023年   83篇
  2022年   198篇
  2021年   231篇
  2020年   289篇
  2019年   311篇
  2018年   260篇
  2017年   311篇
  2016年   262篇
  2015年   264篇
  2014年   381篇
  2013年   452篇
  2012年   270篇
  2011年   297篇
  2010年   232篇
  2009年   371篇
  2008年   400篇
  2007年   406篇
  2006年   361篇
  2005年   332篇
  2004年   264篇
  2003年   286篇
  2002年   222篇
  2001年   181篇
  2000年   182篇
  1999年   157篇
  1998年   130篇
  1997年   103篇
  1996年   85篇
  1995年   75篇
  1994年   91篇
  1993年   66篇
  1992年   50篇
  1991年   38篇
  1990年   35篇
  1989年   32篇
  1988年   29篇
  1987年   16篇
  1986年   11篇
  1985年   8篇
  1984年   3篇
  1983年   7篇
  1982年   3篇
  1981年   2篇
  1980年   4篇
  1978年   2篇
  1977年   1篇
  1954年   2篇
排序方式: 共有7826条查询结果,搜索用时 31 毫秒
111.
Primary production in the eastern tropical Pacific: A review   总被引:2,自引:12,他引:2  
The eastern tropical Pacific includes 28 million km2 of ocean between 23.5°N and S and Central/South America and 140°W, and contains the eastern and equatorial branches of the north and South Pacific subtropical gyres plus two equatorial and two coastal countercurrents. Spatial patterns of primary production are in general determined by supply of macronutrients (nitrate, phosphate) from below the thermocline. Where the thermocline is shallow and intersects the lighted euphotic zone, biological production is enhanced. In the eastern tropical Pacific thermocline depth is controlled by three interrelated processes: a basin-scale east/west thermocline tilt, a basin-scale thermocline shoaling at the gyre margins, and local wind-driven upwelling. These processes regulate supply of nutrient-rich subsurface waters to the euphotic zone, and on their basis we have divided the eastern tropical Pacific into seven main regions. Primary production and its physical and chemical controls are described for each.Enhanced rates of macronutrient supply maintains levels of primary production in the eastern tropical Pacific above those of the oligotrophic subtropical gyres to the north and south. On the other hand lack of the micronutrient iron limits phytoplankton growth (and nitrogen fixation) over large portions of the open-ocean eastern tropical Pacific, depressing rates of primary production and resulting in the so-called high nitrate-low chlorophyll condition. Very high rates of primary production can occur in those coastal areas where both macronutrients and iron are supplied in abundance to surface waters. In these eutrophic coastal areas large phytoplankton cells dominate; conversely, in the open-ocean small cells are dominant. In a ‘shadow zone’ between the subtropical gyres with limited subsurface ventilation, enough production sinks and decays to produce anoxic and denitrified waters which spread beneath very large parts of the eastern tropical Pacific.Seasonal cycles are weak over much of the open-ocean eastern tropical Pacific, although several eutrophic coastal areas do exhibit substantial seasonality. The ENSO fluctuation, however, is an exceedingly important source of interannual variability in this region. El Niño in general results in a depressed thermocline and thus reduced rates of macronutrient supply and primary production. The multi-decadal PDO is likely also an important source of variability, with the ‘El Viejo’ phase of the PDO resulting in warmer and lower nutrient and productivity conditions similar to El Niño.On average the eastern tropical Pacific is moderately productive and, relative to Pacific and global means, its productivity and area are roughly equivalent. For example, it occupies about 18% of the Pacific Ocean by area and accounts for 22–23% of its productivity. Similarly, it occupies about 9% of the global ocean and accounts for 10% of its productivity. While representative, these average values obscure very substantial spatial and temporal variability that characterizes the dynamics of this tropical ocean.  相似文献   
112.
The mathematical framework for turbulent transport in the ocean is reasonably well established. It may be applied to large-scale fields of scalars in the ocean and to the instantaneous or continuous discharge from a point. The theory and its physical basis can also provide an interpretation of passive scalar spectra. Spatial variations in the rate of turbulent transfer can be related to the movement of the center of mass of a scalar and to a formulation in terms of entrainment. The relative dispersion of a scalar with respect to its center of mass and the streakiness of the concentration field within the relative dispersion domain need to be considered. In many of these problems it is valuable to think in terms of simple models for individual streaks, as well as overall statistical properties.  相似文献   
113.
Dissolved titanium distributions in the Mid-Atlantic Bight   总被引:1,自引:0,他引:1  
Stephen A. Skrabal   《Marine Chemistry》2006,102(3-4):218-229
Although titanium is abundant in Earth's crust, its sources and distribution in the ocean are poorly understood. To elucidate its behavior, distributions of dissolved (< 0.2 μm) Ti were determined in surface waters and vertical profiles from the Mid-Atlantic Bight (MAB). Concentrations of Ti decreased from 390 pM at the Delaware Bay mouth to < 100 pM across the Delaware continental shelf. In vertical profiles, small increases in bottom waters suggest a possible flux of Ti from shelf sediments, consistent with previous reports of pore water enrichments of dissolved Ti in MAB sediments. Concentrations in surface waters of the outer shelf and slope ranged between 30 and 140 pM, with most values below 90 pM. Concentrations in a 1000 m vertical profile in the eastern Gulf Stream ranged between 110 and 280 pM, and showed a variable distribution attributed to the mixing of water masses in the outer MAB. A simple model of Ti sources to the MAB suggests that atmospheric deposition of dissolved Ti is comparable to net riverine contributions and therefore must be considered in applications of Ti as a tracer of oceanographic processes.  相似文献   
114.
A four-dimensional variational data assimilation system has been applied to an experiment to describe the dynamic state of the North Pacific Ocean. A synthesis of available observational records and a sophisticated ocean general circulation model produces a dynamically consistent dataset, which, in contrast to the nudging approach, provides realistic features of the seasonally-varying ocean circulation with no artificial sources/sinks for temperature and salinity fields. This new dataset enables us to estimate heat and water mass transports in addition to the qualification of water mass formation and movement processes. A sensitivity experiment on our assimilation system reveals that the origin of the North Pacific Intermediate Water can be traced back to the Sea of Okhotsk and the Bering Sea in the subarctic region and to the subtropical Kuroshio region further south. These results demonstrate that our data assimilation system is a very powerful tool for the identification and characterization of ocean variabilities and for our understanding of the dynamic state of ocean circulation. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
115.
We proposed an empirical equation of sea surface dimethylsulfide (DMS, nM) using sea surface temperature (SST, K), sea surface nitrate (SSN, μM) and latitude (L, °N) to reconstruct the sea surface flux of DMS over the North Pacific between 25°N and 55°N: ln DMS = 0.06346 · SST  0.1210 · SSN  14.11 · cos(L)  6.278 (R2 = 0.63, p < 0.0001). Applying our algorithm to climatological hydrographic data in the North Pacific, we reconstructed the climatological distributions of DMS and its flux between 25 °N and 55 °N. DMS generally increased eastward and northward, and DMS in the northeastern region became to 2–5 times as large as that in the southwestern region. DMS in the later half of the year was 2–4 times as large as that in the first half of the year. Moreover, applying our algorithm to hydrographic time series datasets in the western North Pacific from 1971 to 2000, we found that DMS in the last three decades has shown linear increasing trends of 0.03 ± 0.01 nM year− 1 in the subpolar region, and 0.01 ± 0.001 nM year− 1 in the subtropical region, indicating that the annual flux of DMS from sea to air has increased by 1.9–4.8 μmol m− 2 year− 1. The linear increase was consistent with the annual rate of increase of 1% of the climatological averaged flux in the western North Pacific in the last three decades.  相似文献   
116.
The phytoplankton community in the western subarctic Pacific (WSP) is composed mostly of pico- and nanophytoplankton. Chlorophyll a (Chl a) in the <2 μm size fraction accounted for more than half of the total Chl a in all seasons, with higher contributions of up to 75% of the total Chl a in summer and fall. The exception is the western boundary along the Kamchatka Peninsula and Kuril Islands and the Oyashio region where diatoms make up the majority of total Chl a during the spring bloom. Among the picophytoplankton, picoeukaryotes and Synechococcus are approximately equally abundant, but the former is more important in term of carbon biomass. Despite the lack of a clear seasonal variation in Chl a concentration, primary productivity showed a large seasonal variation, and was lowest in winter and highest in spring. Seasonal succession in the phytoplankton community is also evident with the abundance of diatoms peaking in May, followed by picoeukaryotes and Synechococcus in summer. The growth of phytoplankton (especially >10 μm cell size) in the western subarctic Pacific is often limited by iron bioavailability, and microzooplankton grazing keeps the standing stock of pico- and nano-phytoplankton low. Compared to the other HNLC regions (the eastern equatorial Pacific, the Southern Ocean, and the eastern subarctic Pacific), iron limitation in the Western Subarctic Gyre (WSG) may be less severe probably due to higher iron concentrations. The Oyashio region has similar physical condition, macronutrient supply and phytoplankton species compositions to the WSG, but much higher phytoplankton biomass and primary productivity. The difference between the Oyashio region and the WSG is also believed to be the results of difference in iron bioavailability in both regions. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
117.
We have sampled particles of native aluminium (Al°) in two sediment cores from the Central Indian Basin (CIB). The cores are geographically separated but are located at the base of two seamounts. The native Al° particles occurring as grains and spherules, have an average Al content of  95% and are associated with volcanogenic–hydrothermal material. Morphologically and compositionally, the specimens are similar to those reported from the East Pacific Rise. After ruling out several processes for the presence of the native Al°, we hypothesize that during progressive melting of magma, a basaltic magma is produced which has high contents of reductants such as methane and hydrogen, and a low oxygen fugacity. During the upward migration of such magma, reduction to metallic aluminium and the formation of native Al° particles takes place.  相似文献   
118.
119.
The collection of articles in this volume reviewing eastern tropical Pacific oceanography is briefly summarized, and updated references are given. The region is an unusual biological environment as a consequence of physical characteristics and patterns of forcing – including a strong and shallow thermocline, the ITCZ and coastal wind jets, equatorial upwelling, the Costa Rica Dome, eastern boundary and equatorial current systems, low iron input, inadequate ventilation of subthermocline waters, and dominance of ENSO-scale temporal variability. Remaining unanswered questions are presented.  相似文献   
120.
REEdistributioninwater-sedimentinterfacesystematdeepoceanfloor¥ZhangLijie;LiuJihuaandYaoDe(ReceivedFebruary1,1994;acceptedMay...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号