首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   500篇
  免费   25篇
  国内免费   8篇
测绘学   1篇
大气科学   4篇
地球物理   87篇
地质学   340篇
海洋学   4篇
天文学   5篇
综合类   4篇
自然地理   88篇
  2023年   1篇
  2022年   1篇
  2021年   8篇
  2020年   10篇
  2019年   8篇
  2018年   5篇
  2017年   9篇
  2016年   9篇
  2015年   11篇
  2014年   10篇
  2013年   38篇
  2012年   20篇
  2011年   12篇
  2010年   9篇
  2009年   19篇
  2008年   41篇
  2007年   36篇
  2006年   45篇
  2005年   33篇
  2004年   46篇
  2003年   22篇
  2002年   18篇
  2001年   15篇
  2000年   10篇
  1999年   13篇
  1998年   13篇
  1997年   7篇
  1996年   10篇
  1995年   11篇
  1994年   9篇
  1993年   5篇
  1992年   5篇
  1991年   5篇
  1990年   2篇
  1989年   2篇
  1988年   3篇
  1987年   2篇
  1986年   1篇
  1985年   3篇
  1983年   3篇
  1980年   3篇
排序方式: 共有533条查询结果,搜索用时 31 毫秒
81.
Rockfall release is a rather unpredictable process. As a result, the occurrence of rockfall often threatens humans and (infra)structures. The assessment of potential drivers of rockfall activity therefore remains a major challenge, even if the relative influence of rainfall, snowmelt, or freeze–thaw cycles has long been identified in short-term monitoring projects. In the absence of longer-term assessments of rockfall triggers and possible changes thereof, our knowledge of rockfall dynamics remains still lacunary as a result of the persisting scarcity of exhaustive and precise rockfall databases. Over the last decades, several studies have employed growth disturbances (GDs) in tree-ring series to reconstruct rockfall activity. Paradoxically, these series were only rarely compared to meteorological records. In this study, we capitalize on the homogeneity of a centennial-old reforestation plot to develop two reconstructions – R1 including only growth suppressions, and R2 based on injuries – with limited biases related to decreasing sample size and changes in exposed diameters back in time. By doing so, our study also and quite clearly highlights the large potential that protection forests have in terms of yielding reliable, multidecadal rockfall reconstructions. From a methodological perspective, we find no synchronicity between R1 and R2, as well as an absence of meteorological controls on rockfall processes in R1. This observation pleads for a careful selection of GDs in future reconstructions. In terms of process dynamics, we demonstrate that summer intense rainfall events (>10 mm day−1) are the main drivers for rockfall activity at our study site. Despite the stringency of our detection procedure, correlations between rockfall activity and meteorological variables remain comparable to those reported in previous studies, as a result of the complexity and multiplicity of triggering factors. We therefore call for a more systematic coupling of tree-ring analysis with rockfall and microclimatic monitoring in future studies. © 2020 John Wiley & Sons, Ltd.  相似文献   
82.
In the Mont Blanc massif (European Western Alps), rockfalls are one of the main natural hazards for alpinists and infrastructure. Rockfall activity after the Little Ice Age is well documented. An increase in frequency during the last three decades is related to permafrost degradation caused by rising air temperatures. In order to understand whether climate exerts a long-term control on rockfall occurrence, a selection of paleo-rockfall scars was dated in the Glacier du Géant basin [>3200 m above sea level (a.s.l.)] using terrestrial cosmogenic nuclides. Rockfall occurrence was compared to different climatic and glacial proxies. This study presents 55 new samples (including replicates) and 25 previously-published ages from nine sampling sites. In total, 62 dated rockfall events display ages ranging from 0.03 ± 0.02 ka to 88.40 ± 7.60 ka. Holocene ages and their uncertainties were used to perform a Kernel density function into a continuous dataset displaying rockfall probability per 100 years. Results highlight four Holocene periods of enhanced rockfall occurrence: (i) c. 7–5.7 ka, related to the Holocene Warm Periods; (ii) c. 4.5–4 ka, related to the Sub-boreal Warm Period; (iii) c. 2.3–1.6 ka, related to the Roman Warm Period; and (iv) c. 0.9–0.3 ka, related to the Medieval Warm Period and beginning of the Little Ice Age. Laser and photogrammetric three-dimensional (3D) models of the rock walls were produced to reconstruct the detached volumes from the best-preserved rockfall scars (≤0.91 ± 0.12 ka). A structural study was carried out at the scale of the Glacier du Géant basin using aerial photographs, and at the scale of four selected rock walls using the 3D models. Two main vertical and one horizontal fracture sets were identified. They correspond respectively to alpine shear zones and veins opened-up during long-term exhumation of the Mont Blanc massif. Our study confirms that climate primarily controls rockfall occurrence, and that structural settings, coincident at both the massif and the rock wall scales, control the rock-wall shapes as well as the geometry and volume of the rockfall events. © 2020 John Wiley & Sons, Ltd.  相似文献   
83.
Glaciokarst is a landscape which combines karst features and hydrology as well as inherited glacial features. It is a result of glaciation upon a karst geomorphological system. The relationship between glaciers and karst is rather poorly known and inadequately recognized. This research focuses on three distinct karst areas along the Adriatic coast in the southern Dinaric Alps that were affected by the Quaternary glaciations. An insight into specific glaciokarst processes and surface features was provided through the study of the areas of the Lov?en, Orjen and Vele? Mountains. A glaciokarst geomorphology is in general well preserved due to the prevailing vertically oriented chemical denudation following de‐glaciation and almost the entire absence of other surface processes. Typical glacial erosional features are combined by a variety of depressions which are the result of a karstic drainage of sub‐glacial waters. The majority of glacial deposits occur as extensive lateral‐terminal moraine complexes, which are often dissected by smaller breach‐lobe moraines on the external side of the ridge. Those moraine complexes are likely to be a product of several glacial events, which is supported by complex depositional structures. According to the type of glacial depositional features, the glaciers in the study areas were likely to have characteristics of moraine‐dammed glaciers. Due to vertical drainage ice‐marginal fluvial processes were unable to evacuate sediment. Fluvial transport between glacial and pro‐glacial systems in karst areas is inefficient. Nevertheless, some sediment from the glacier margin is washed away by the pro‐glacial streams, filling the karst depressions and forming piedmont‐type poljes. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
84.
Although beryllium‐10 (10Be) concentrations in stream sediments provide useful synoptic views of catchment‐wide erosion rates, little is known on the relative contributions of different sediment supply mechanisms to the acquisition of their initial signature in the headwaters. Here we address this issue by conducting a 10Be‐budget of detrital materials that characterize the morphogenetic domains representative of high‐altitude environments of the European Alps. We focus on the Etages catchment, located in the Ecrins‐Pelvoux massif (southeast France), and illustrate how in situ 10Be concentrations can be used for tracing the origin of the sand fraction from the bedload in the trunk stream. The landscape of the Etages catchment is characterized by a geomorphic transient state, high topographic gradients, and a large variety of modern geomorphic domains ranging from glacial environments to scarcely vegetated alluvial plains. Beryllium‐10 concentrations measured in the Etages catchment vary from ~1 × 104 to 4.5 × 105 atoms per gram quartz, while displaying consistent 10Be signatures within each representative morphogenetic unit. We show that the basic requirements for inferring catchment‐wide denudation from 10Be concentration measurements are not satisfied in this small, dynamic catchment. However, the distinct 10Be signature observed for the geomorphic domains can be used as a tracer. We suggest that a terrestrial cosmogenic nuclide (TCN) budget approach provides a valuable tool for the tracing of material origin in basins where the ‘let nature do the averaging’ principles may be violated. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
85.
Landscape evolution and surface morphology in mountainous settings are a function of the relative importance between sediment transport processes acting on hillslopes and in channels, modulated by climate variables. The Niesen nappe in the Swiss Penninic Prealps presents a unique setting in which opposite facing flanks host basins underlain by identical lithologies, but contrasting litho‐tectonic architectures where lithologies either dip parallel to the topographic slope or in the opposite direction (i.e. dip slope and non‐dip slope). The north‐western facing Diemtigen flank represents such a dip slope situation and is characterized by a gentle topography, low hillslope gradients, poorly dissected channels, and it hosts large landslides. In contrast, the south‐eastern facing Frutigen side can be described as non‐dip slope flank with deeply incised bedrock channels, high mean hillslope gradients and high relief topography. Results from morphometric analysis reveal that noticeable differences in morphometric parameters can be related to the contrasts in the relative importance of the internal hillslope‐channel system between both valley flanks. While the contrasting dip‐orientations of the underlying flysch bedrock has promoted hillslope and channelized processes to contrasting extents and particularly the occurrence of large landslides on the dip slope flank, the flank averaged beryllium‐10 (10Be)‐derived denudation rates are very similar and range between 0.20 and 0.26 mm yr?1. In addition, our denudation rates offer no direct relationship to basin's slope, area, steepness or concavity index, but reveal a positive correlation to mean basin elevation that we interpret as having been controlled by climatically driven factors such as frost‐induced processes and orographic precipitation. Our findings illustrate that while the landscape properties in this part of the northern Alpine border can mainly be related to the tectonic architecture of the underlying bedrock, the denudation rates have a strong orographic control through elevation dependent mean annual temperature and precipitation. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
86.
LiDAR data were used to quantify and analyse a rockfall event which occurred in 2003 in the Western Dolomites (Italian Alps). In addition to previously existing airborne laserscanning (ALS) data, high resolution terrestrial laserscanning (TLS) data were collected. By using the original point clouds, the volume, axial ratio and runout length of single boulders as well as the surface roughness in the runout zone of the rockfall were derived. The total volume of the rockfall event of approximately 10 000 m³ was estimated by a reconstruction of the pre‐event surface at the detachment zone. The analysis of the laser scanning data of the accumulation zone revealed a power law scaling for boulder volumes larger than 8 m³. The dependence of runout length on boulder volume is complex; it is moderated by particle sphericity. In addition, we used ALS and TLS data to derive the spatial distribution of surface roughness on the talus cone. TLS allow for more accurate roughness mapping than ALS data, but for most applications the point density of ALS data seems to be sufficiently high to derive measures of roughness. Different sampling approaches for plane fitting on the scale of 5 m did not show significant effects besides the computational time. The results of our analyses provide important perspectives for rockfall modelling and process understanding with potential applications in both ‘applied’ (natural hazards) and ‘pure’ geomorphological research. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
87.
A lot of paleoenvironmental surveys have been carried out in the Alpine region to elucidate glacier extension during the Last Glacial or the Würmian (115 - 12 ka BP). However, the evidence of past glaciations differs greatly between Western and Eastern Alps, while contrast between Southern and Northern Alps is not evident. The main purpose of this paper is to interpret variability of humidity during the last interglacial-glacial cycle in the Alpine region, based on results of various surveys performed in the Alpine region. Results show that distribution of moisture throughout the Alps was most even during the Late Würmian, while precipitation was mainly concentrated in the (North)Western Alps during the Early Würmian and in the (North)Western and along all the Southern Alps during the Middle Würmian. The Eastern Alps were rather dry during both episodes. Such moisture distribution can be explained by paths of prevailing winds. Moisture distribution is directly linked with atmospheric and oceanic circulation.  相似文献   
88.
M. Ruff  K. Czurda   《Geomorphology》2008,94(3-4):314
The aim of the study is landslide hazard assessment carried out on a working scale of 1:25 000. The study area within the Northern Calcareous Alps was geologically and geotechnically mapped in order to identify causes and mechanisms of active mass movements. The field surveys were digitised by a Geographical Information System and divided into data layers. The geological units were classified according to their geotechnical properties. All layers were converted into grids and spatially analysed together with a Digital Elevation Model. Comparing the layers with the inventory of active landslides, the prevailing factors leading to sliding movements were identified. Because of the complex tectonic setting and the small number of active landslides, a statistical method of hazard assessment was not applicable. Using the heuristic approach of an index method, the data layers of geotechnical class, bedding conditions, tectonic layouts, slope angles, slope orientations, vegetation and erosion were analysed. The susceptibility of each layer has been evaluated with help of bivariate statistics. The layers have been weighted with indices due to their importance iteratively and were combined into a landslide susceptibility map.  相似文献   
89.
Comparing models of debris-flow susceptibility in the alpine environment   总被引:12,自引:3,他引:9  
Debris-flows are widespread in Val di Fassa (Trento Province, Eastern Italian Alps) where they constitute one of the most dangerous gravity-induced surface processes. From a large set of environmental characteristics and a detailed inventory of debris flows, we developed five models to predict location of debris-flow source areas. The models differ in approach (statistical vs. physically-based) and type of terrain unit of reference (slope unit vs. grid cell). In the statistical models, a mix of several environmental factors classified areas with different debris-flow susceptibility; however, the factors that exert a strong discriminant power reduce to conditions of high slope-gradient, pasture or no vegetation cover, availability of detrital material, and active erosional processes. Since slope and land use are also used in the physically-based approach, all model results are largely controlled by the same leading variables.Overlaying susceptibility maps produced by the different methods (statistical vs. physically-based) for the same terrain unit of reference (grid cell) reveals a large difference, nearly 25% spatial mismatch. The spatial discrepancy exceeds 30% for susceptibility maps generated by the same method (discriminant analysis) but different terrain units (slope unit vs. grid cell). The size of the terrain unit also led to different susceptibility maps (almost 20% spatial mismatch). Maps based on different statistical tools (discriminant analysis vs. logistic regression) differed least (less than 10%). Hence, method and terrain unit proved to be equally important in mapping susceptibility.Model performance was evaluated from the percentages of terrain units that each model correctly classifies, the number of debris-flow falling within the area classified as unstable by each model, and through the metric of ROC curves. Although all techniques implemented yielded results essentially comparable; the discriminant model based on the partition of the study area into small slope units may constitute the most suitable approach to regional debris-flow assessment in the Alpine environment.  相似文献   
90.
《自然地理学》2013,34(2):137-154
Floristic composition and environmental factors vary widely among plant communities in the alpine belt. Thus far no study has attempted to measure all relevant site conditions in a larger number of alpine communities. Here we show (1) which environmental factors were highly correlated with the floristic composition of the 14 plant communities investigated in the Swiss Alps and (2) which plant communities have similar environmental affinities. In every plant community investigated, the main factors potentially having an impact on plant life were measured and the floristic composition was defined. We used nonmetric multidimensional scaling (NMDS) to determine linkage between plant communities and complex environmental gradients. The first axis of the NMDS corresponds to a climate gradient (temperature/wind speed), and the second axis corresponds to a soil gradient (soil suction/pH/Ca content). With the exception of the Nardus grassland and Carex curvula turf, plant communities belonging to the same phytosociological class are exposed to very similar combinations of environmental factors. Our study shows that the variation between phytosociological classes is much larger than within classes. Still, the variation of environmental factors within individual classes leads to a further differentiation of the floristic composition. Thus, our study reinforces the validity of the phytosociological classification.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号