首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   500篇
  免费   25篇
  国内免费   8篇
测绘学   1篇
大气科学   4篇
地球物理   87篇
地质学   340篇
海洋学   4篇
天文学   5篇
综合类   4篇
自然地理   88篇
  2023年   1篇
  2022年   1篇
  2021年   8篇
  2020年   10篇
  2019年   8篇
  2018年   5篇
  2017年   9篇
  2016年   9篇
  2015年   11篇
  2014年   10篇
  2013年   38篇
  2012年   20篇
  2011年   12篇
  2010年   9篇
  2009年   19篇
  2008年   41篇
  2007年   36篇
  2006年   45篇
  2005年   33篇
  2004年   46篇
  2003年   22篇
  2002年   18篇
  2001年   15篇
  2000年   10篇
  1999年   13篇
  1998年   13篇
  1997年   7篇
  1996年   10篇
  1995年   11篇
  1994年   9篇
  1993年   5篇
  1992年   5篇
  1991年   5篇
  1990年   2篇
  1989年   2篇
  1988年   3篇
  1987年   2篇
  1986年   1篇
  1985年   3篇
  1983年   3篇
  1980年   3篇
排序方式: 共有533条查询结果,搜索用时 31 毫秒
11.
Fission-track cooling ages of detrital apatite (AFT) in the East Alpine Molasse Basin display age groups corresponding to geodynamic events in the orogen since Jurassic times. These age groups are typical of certain thermotectonic units, which formed a patchwork in the Swiss and Eastern Alps. By a combination of petrographic and thermochronologic data, progressive erosion of source terrains is monitored in different catchments since the Oligocene. The AFT cooling ages show a decrease in lag time until when rapidly cooled debris derived from tectonically exhumed core complexes became exposed. After termination of tectonic exhumation, lag times of debris derived from the core complexes increased. Neither on the scale of the entire Eastern Alps, or on the scale of individual catchments, steady-state exhumation is observed, due to the highly dynamic changes of exhumation rates since Late Eocene collision.  相似文献   
12.
In Savoy, the Grands-Moulins recent fault scarps, previously interpreted as seismic fault ruptures, are in fact part of a major Sackung (deep seated gravitational spreading) of the French Alps (9 km long). We mapped more than 60 sackung scarps, some of them reaching 1330 m long and 30 m high. These antislope scarps stop the active screes and offset relict Dryassic rock glaciers by 16 m. We present geomorphologic observations attesting for their gravitational origin. This Sackung is primarily due to glacial debuttressing, while seismic shaking could be a triggering mechanism. To cite this article: J.-C. Hippolyte et al., C. R. Geoscience 338 (2006).  相似文献   
13.
14.
15.
In the central part of the internal Western Alps, widespread multidirectional normal faulting resulted in an orogen-scale radial extension during the Neogene. We revisit the frontal Piémont units, between Doire and Ubaye, where contrasting lithologies allow analysing the interference with the N–S trending Oligocene compressive structures. A major extensional structure is the orogen-perpendicular Chenaillet graben, whose development was guided by an E–W trending transfer fault zone between the Chaberton backfold to the north and the Rochebrune backthrust to the south. The Chaberton hinge zone was passively crosscut by planar normal faults, resulting in a E–W trending step-type structure. Within the Rochebrune nappe, E–W trending listric normal faults bound tilted blocks that slipped northward along the basal backthrust surface reactivated as an extensional detachment. Gravity-driven gliding is suggested by the general northward tilting of the structure in relation with the collapse of the Chenaillet graben. The stress tensors computed from brittle deformation analysis confirm the predominance of orogen-parallel extension in the entire frontal Piémont zone. This can be compared with the nearby Briançonnnais nappe stack where the extensional reactivation of thrust surfaces locally resulted in prominent orogen-perpendicular extension. Such a contrasting situation illustrates how the main direction of the late-Alpine extension may be regionally governed by the nature and orientation of the pre-existing structures inherited from the main collision stage.  相似文献   
16.
The knowledge of past events is important for the assessment of debris-flow hazard. Amongst the sources of information, documents from historical archives are particularly important in sites where the debris flows cause damage to urban areas and transportation routes. The paper analyses the availability of historical documents on debris flows in Northeastern Italy and discusses factors that can influence the building of time series from archive data both at regional and single basin scales. An increased number of debris flows was observed in the studied region for the last decades. This could be due both to an increased frequency of the events and to a larger availability of information: the analysis carried out indicates that the latter factor is probably the most influencing. The importance of factors, which affect the collection of data, including the conservation of documents and the presence and fragility of the elements at risk, is stressed in view of a wise use of historical data on debris flows.  相似文献   
17.
Sedimentological, granulometric and petrographic data are presented from a detailed study on a crystal-rich mass flow deposit, which is presumably related to the eruption of a sublacustrine cryptodome. The deposit forms a prominent intercalation in the Lower Permian Collio Formation in the Italian Alps north of Brescia. Outcrops of the 10–20-m-thick volcaniclastic deposit (Dasdana I Beds, DB) can be traced over 12 km from east to west. The DB consists of a thick, crystal-rich, sandy–gravelly lower subunit representing a sequence of amalgamated Bouma-a(b) divisions overlain by a thin, well-bedded, sandy–muddy subunit that is rich in outsize porphyritic silicic fragments. Modal and computer-aided image analyses reveal that the crystal-rich lower subunit contains up to 80% of volcanogenic crystals. Some samples contain up to 60% of porphyritic fragments, which have a phenocryst content of about 20%. The wide textural range from cryptocrystalline, poikilomosaic, to rarer medium-grained granophyric groundmass, the irregular to lensoid shapes of the porphyritic fragments, and the presence of basement and sedimentary clasts suggest that the DB originated from a sublacustrine eruption of a partially extrusive cryptodome (ca. 1.6 km3). Two other porphyritic felsic cryptodomes (Dosso dei Lupi, Dosso del Bue), described briefly here, emplaced into the Collio Formation sometime after the DB event, and expose flat bases and tilted sediments at their sides. Textures observed in these domes are comparable to those found in the DB porphyritic fragments.  相似文献   
18.
Cu-poor meneghinite from La Lauzière Massif (Savoy, France) has the composition (electron microprobe) (in wt%): Pb 59.50, Sb 20.33, Bi 1.19, Cu 0.87, Ag 0.05, Fe 0.03, S 17.62, Se 0.05, Total 99.64. Its crystal structure (X-ray on a single crystal) was solved with R1=0.0506, wR2=0.1026, with an orthorhombic symmetry, space group Pnma, and a=24.080(5) Å, b=4.1276(8) Å, c=11.369(2) Å, V=1130.0(4) Å3, Z=4. Relatively to the model of Euler and Hellner (1960), this structure shows a significantly lower site occupancy factor for the tetrahedral Cu site (0.146 against 0.25). Among the five other metallic sites, Bi appears in the one with predominant Sb. Developed structural formula: Cu0.15Pb2(Pb0.53Sb0.47)(Pb0.46Sb0.54)(Sb0.75Pb0.19Bi0.06)S6; the reduced one: Cu0.58Pb12.72(Sb7.04Bi0.24)S24. The formation of such a Cu-poor variety seems to be related to specific paragenetic conditions (absence of coexisting galena), or to crystallochemical constraints (minor Bi). To cite this article: Y. Moëlo et al., C. R. Geoscience 334 (2002) 529–536.  相似文献   
19.
Rare earth patterns of surface and groundwaters near big cities often show anthropogenic Gd (Gdant) anomalies in addition to geogenic Ce and Y anomalies. The Gdant anomaly is caused by very stable organic complexes, one of which is gadopentetic acid, Gd‐DTPA. Derivatives of this and similar compounds are used as contrast agents in magnetic resonance imaging (MRI) of the human blood system. The organic Gd complexes are stable enough to pass nearly unaffected through sewage treatment plants and are, thereafter, discharged into surface water systems. Water of the rapidly flowing Isarco/Eisack and Adige/Etsch rivers (Provinces of Trento and Bolzano/Bozen, NE Italy) and their tributaries show remarkable variations in anthropogenic Gd contents (Gdant). Low Gdant values are found on Monday and Tuesday, whereas high values are observed during the remaining weekdays. Reliable Gdant balances are calculated for the river system at the confluence of the Adige and its tributaries. At two places local decrease of Gdant indicates exfiltration of groundwater. It is demonstrated that Gdant can be used as a reliably conservative tracer to study the water budget in rapidly flowing alpine river systems. The studied different river waters show considerable negative Ce and positive Y anomalies. Negative Ce anomalies are caused by scavenging of Ce(III) by FeO(OH) precipitates and subsequent oxidation to CeO2. Y anomalies are attributed to less sorption of Y than REE onto particulate matter. Thus, Y moves faster than REE. Both, Ce and Y anomalies, are of geogenic origin.  相似文献   
20.
Petrological data provide a good record of the thermal structure of deeply eroded orogens, and, in principle, might be used to relate the metamorphic structure of an orogen to its deformational history. In this paper, we present two‐dimensional thermal modelling of various subduction models taking into account varying wedge geometry as well as variation of density and topography with metamorphic reactions. The models clearly show that rock type accreted in the wedge has important effects on the thermal regime of orogenic wedges. The thermal regime is dominated by radiogenic heat production. Material having high radioactive heat production, like the granodioritic upper crust, produces high temperature metamorphism (amphibolitic conditions). Material with low radioactive heat production results in low temperature metamorphism of greenschist or blueschist types depending on the thickness of the wedge. Application of this model to seemingly unrelated areas of the Central Alps (Lepontine Dome, Grisons) and Eastern Alps (Tauern Window) explains the coexistence and succession of distinct Barrovian and blueschist facies metamorphic conditions as the result of a single, continuous tectonic process in which the main difference is the composition of the incoming material in the orogenic wedge. Accretion of the European upper continental crust in the Lepontine and Tauern Domes produces Barrovian type metamorphism while accretion of oceanic sediments results in blueschist facies metamorphism in the Valaisan domain.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号