Lake sediment can sequestrate large amounts of carbon and this issue has become a research hotspot. However, most of research on carbon burial in lakes is based on a single (or a few) sediment core records and so may underestimate the variability of carbon burial features within a single lake. In this study, therefore, Chaohu Lake, a typical large shallow lake in the middle and lower reaches of the Yangtze River, was selected to conduct multiple, high resolution sediment core studies to elucidate that variability. Overall 18 sediment cores are analyzed according to paleolimnological proxies (including 210Pb/137Cs for 3 master cores); sediment accumulation rate, total organic carbon, grain size and loss of ignition is measured or estimated for most cores. The spatiotemporal variations of organic carbon burial rate (OCBR), carbon storage and their driving factors were examined. Results show: 1) There was a clear temporal difference in carbon burial during the past 150 years, with OCBR varying from 1.1 g C/m2/y to 25.6 g C/m2/y (mean 9.8 g C/m2/y). OCBR began to increase after around 1900, a rapid increase followed after 1950s and a downward trend after 1970s. Total carbon burial amount (OCBA) in the lake since the 1850s is 1.11 x 1010 g. 2) The average OCBR of six sediment cores in the northwest lake area is 13.4 g C/m2/y, significantly higher than that for sediment cores in other areas (9.6 g C/m2/y). 3) TOC, OCBR, OCBA in all 18 cores exhibited similar temporal patterns (i.e. marked increase since 1950s in most of the cores) but with significant differences in several lake locations. 4) During the last 150 years, carbon burial in Chaohu Lake appears to be greatly affected by changes in regional temperature and population size, according to their significant correlations. OCBR also has a significant correlation with the average lake level in the past 50 years, indicating human activity (notably dam building). This has imposed an important impact on OCBR in Chaohu Lake. This multi-sediment core study reveals the spatiotemporal characteristics of carbon burial in the lake and provides an important basis for increasing the accuracy of calculating carbon storage in large shallow lakes. 相似文献
In 2008, the very extensive tropical peats were estimated to be about 182 million ha spanning South America, Asia and Africa. About 20.3%(36.9 million ha) of this area exist in Asia. Peats are classified based on their degree of decomposition, namely Fibrists, Hemists, Saprists and Folists. This makes them different in characteristics. The activities of microorganisms vary in different types of peat due to, for example, the sapric layer of well humified peat can provide water and food to microorganisms during heat stress. In another scenario, deeper peat is older and typically has lower levels of labile carbon to provide substrate for microbes compared to surface peat. A complete understanding of the microbial communities in different layers of peat is essential as microorganisms play major roles in peat decomposition and are important to ecosystem processes. These peats are a very important global carbon(C)store or reserve and could severely impact climate change if not managed well. Peatlands can store as much as 40 to 90 Gt C. Mis-management of peats could severely impact the environment particularly the emission of carbon into the atmosphere. For instance, clearing of peatlands using fire has been reported to release an estimated 88 t C ha~(-1) to the atmosphere. There are several factors which influence the environmental consequences of tropical peat especially in relation to climate change. The main influences are:(i) changes in temperature,(ii) changes in precipitation or rainfall,(iii) changes in atmospheric composition, and(iv) fire and haze. This paper is a brief review on these four influences in relation to climate change. It is apparent from the brief review that there is a need for continued short and long-term research to better understand tropical peats and how they affect our climate. This will hopefully provide the basis for predicting better what could happen under various scenarios. 相似文献
Carbon pricing, including carbon taxes and emissions trading, has been adopted by different kinds of polities worldwide. Yet, beyond the increasing adoption over time, little is known about what polities – countries as well as sub- and supranational entities – adopt carbon pricing and why. This paper explores patterns of adoption (both implemented policies and those scheduled to be) through cluster analysis, with the purpose of investigating factors that could explain polities’ decisions to adopt carbon pricing. The study contributes empirically by studying carbon taxes and emissions trading together and by ordering the polities adopting carbon pricing into clusters. It also contributes theoretically, by exploring constellations of variables that drive the adoption of carbon pricing within individual clusters. We investigated 66 adopted policies of carbon pricing, which were divided into five clusters: early adopters, North-American subnational entities, Chinese pilot provinces, second-wave developed polities, and second-wave developing polities. The analysis indicates that the reasons for adopting carbon pricing have shifted over time. While international factors (climate commitments or influences from polities within the same region) are increasingly salient, domestic factors (including crises and income levels) were more important for the early adopters.
Key policy insights
Carbon pricing has become a global mainstream policy instrument.
Economic and fiscal crises provide windows of opportunity for promoting carbon pricing.
The international climate regime can support the adoption of carbon pricing through mitigation commitments and international financial and technical assistance.
Learning between polities from the same region is a useful tool for promoting carbon pricing.
Carbon intensive economies tend to prefer emissions trading over carbon taxes.
Louisiana's chronic wetland deterioration has resulted in massive soil organic matter loss and subsequent carbon release through oxidation. To combat these losses, and reestablish ecosystem function, goods, and services, many restoration projects have been constructed or planned throughout coastal Louisiana. There are significant data gaps and conflicting results regarding wetland contributions to global warming, especially related to carbon sequestration in restored wetlands. An exceptionally large data set was used to derive carbon accumulation rates from key soil characteristics and processes. Assessments and comparisons of bulk density, organic matter, total carbon, vertical accretion (short- and longer-term), and carbon accumulation rates were made across time (chronosequence) and space (i.e., coastwide, watershed basins, and vegetation zones). Carbon accumulation rates in the Louisiana coastal zone were generally correlated to hydrogeomorphology, with higher rates occurring in zones of high river connectivity or in swamp or higher salinity tolerant marsh. On average, naturally occurring wetlands had higher carbon accumulation rates than restoration sites. Although some restoration measures were higher, and most showed increasing carbon accumulation rates over time. Results demonstrate that although wetland restoration provides many ecosystem benefits, the associated carbon sequestration may also provide useful measures for climate change management. 相似文献
Forests played an important role in carbon sequestration during the past two decades. Using a model tree ensemble method(MTE) to regress the seven reflectance bands of EOS-Terra-MODIS satellite data against country level forest biomass carbon density(BCD) of 2001–2005 provided by United Nations' s Forest Resource Assessment(FRA), we developed a global map of forest BCD at 1 km×1 km resolution for both 2001–2005 and 2006–2010. For 2006–2010, the total global forest biomass carbon stock is estimated as 279.6±7.1 Pg C, and the tropical forest biomass carbon stock is estimated as 174.4±5.4 Pg C. During the first decade of the 21 st century, we estimated an increase of global forest biomass of 0.28±0.75 Pg C yr-1. Tropical forest biomass carbon stock slightly decreased(-0.31±0.60 Pg C yr-1); by contrast, temperate and boreal forest biomass increased(0.58±0.28 Pg C yr-1) during the same period. Our estimation of the global forest biomass carbon stock and its changes is subject to uncertainties due to lack of extensive ground measurements in the tropics, spatial heterogeneity in large countries, and different definitions of forest. The continuously monitoring of forest biomass carbon stock with MODIS satellite data will provide useful information for detecting forest changes. 相似文献
This study investigates the δ13C values of Middle Miocene–Modern drift deposits and periplatform sediments in the Maldives and compares these data with the global δ13C values derived from bulk oceanic sediments and foraminifera. This comparison reveals that while the δ13C values of the early Miocene periplatform sediments in the Maldives appear to track the global record of δ13C values, including increases associated with the Oligocene–Miocene boundary as well as the variations within the Monterey Event, the correlation with the Monterey Event may be coincidental. It is suggested that variations in δ13C values do not reflect changes in oceanic dissolved inorganic carbon, but instead pulses of sediment arising from platform progradation that contribute carbonates with elevated δ13C values derived from the adjacent shallow‐water atolls. This conclusion is supported both by correlations between the seismic sequence architecture and the δ13C values which document progradation of 13C‐rich platform sediments, and also by the continuation of the interval of 13C‐rich sediments past the end of the Monterey Event at 13 Ma within the drift. 相似文献
The processes involved in the interaction between organic fluids and carbonates, and the resulting effect on reservoir quality during the evolution and maturation of organic matter remain unclear despite the fact that these processes influence the carbon and oxygen isotopic compositions of carbonates. Here, we provide new insights into these processes using data obtained from a detailed analysis of a mixed dolomitic–clastic and organic-rich sedimentary sequence within the middle Permian Lucaogou Formation in the Junggar Basin of NW China. The techniques used during this study include drillcore observations, thin section petrography, scanning electron microscopy (SEM) and electron probe microanalysis, and carbon and oxygen isotope analyses. Oil grades and total organic carbon (TOC) contents represent the amount of oil charging and the abundance of organic fluids within a reservoir, respectively, and both negatively correlate with the whole-rock δ13C and δ18O of the carbonates in the study area, indicating that organic fluids have affected the reservoir rocks. Secondary carbonates, including sparry calcite and dolomite overgrowths and cements, are common within the Lucaogou Formation. Well-developed sparry calcite is present within dark mudstone whereas the other two forms of secondary carbonates are present within the dolomite-rich reservoir rocks in this formation. Comparing thin section petrology with δ13C compositions suggests that the carbon isotopic composition of matrix carbonates varies little over small distances within a given horizon but varies significantly with stratigraphic height as a result of the development of secondary carbonates. The net change in whole-rock δ13C as a result of these secondary carbonates ranges from 1.8‰ to 4.6‰, with the secondary carbonates having calculated δ13C compositions from −18.6‰ to −8.5‰ that are indicative of an organic origin. The positive correlation between the concentration of Fe within matrix and secondary carbonates within one of the samples suggests that the diagenetic system within the Lucaogou Formation was relatively closed. The correlation between δ13C and δ18O in carbonates is commonly thought to be strengthened by the influence of meteoric water as well as organic fluids. However, good initial correlation between δ13C and δ18O of whole rock carbonates within the Lucaogou Formation (resulted from the evaporitic sedimentary environment) was reduced by organic fluids to some extent. Consequently, the δ13C–δ18O covariations within these sediments are not always reliable indicators of diagenetic alteration by organic fluids or meteoric water.The characteristics and δ13C compositions of the sparry calcite within the formation is indicative of a genetic relationship with organic acids as a result of the addition of organic CO2 to the reservoir. Further analysis suggests that both carbonate and feldspar were dissolved by interaction with organic CO2. However, dissolved carbonate reprecipitated as secondary carbonates, meaning that the interaction between organic fluids and dolomites did not directly improve reservoir quality, although this process did enhance the dissolution of feldspar and increase porosity. This indicates that the δ13C and δ18O of secondary carbonates and their influence on whole-rock carbonate isotopic values can be used to geochemically identify the effect of organic fluids on closed carbonate-rich reservoir systems. 相似文献
This paper assesses challenges for social impact assessment (SIA) for coastal and offshore infrastructure projects, using the case study of the Tomakomai Carbon Capture and Storage (CCS) Demonstration Project in Hokkaido, Japan. Interest in SIA and linked concepts such as social licence to operate is growing, yet marine environments also have potential to raise additional complexity in project governance. Drawing on qualitative research conducted in Tomakomai and Japan more widely across the project development and implementation phase, the paper argues that building an understanding of the social, cultural and historical relationship between the community, industry and the sea is crucial to understanding the neutral or cautiously supportive response of the citizens and stakeholders in Tomakomai to the project. Moreover, effective SIA in coastal regions needs to find a way to account for – or at least make visible – these complex relations between society and the sea. Based on the findings, it is suggested that developers or policymakers overseeing SIA in coastal regions ought to pay extra attention to the extent to which developments like CCS are viewed by communities as 'new' as opposed to a continuation of existing activities in the sea; to the importance of engagement on monitoring during the project operations phase; and to the non-economic values such as pride and identity which communities and stakeholders may derive from the sea. 相似文献
This article outlines a critical gap in the assessment methodology used to estimate the macroeconomic costs and benefits of climate and energy policy, which could lead to misleading information being used for policy-making. We show that the Computable General Equilibrium (CGE) models that are typically used for assessing climate policy use assumptions about the financial system that sit at odds with the observed reality. These assumptions lead to ‘crowding out’ of capital and, because of the way the models are constructed, negative economic impacts (in terms of gross domestic product (GDP) and welfare) from climate policy in virtually all cases.
In contrast, macro-econometric models, which follow non-equilibrium economic theory and adopt a more empirical approach, apply a treatment of the financial system that is more consistent with reality. Although these models also have major limitations, they show that green investment need not crowd out investment in other parts of the economy – and may therefore offer an economic stimulus. Our conclusion is that improvements in both modelling approaches should be sought with some urgency – both to provide a better assessment of potential climate and energy policy and to improve understanding of the dynamics of the global financial system more generally.
POLICY RELEVANCE
This article discusses the treatment of the financial system in the macroeconomic models that are used in assessments of climate and energy policy. It shows major limitations in approach that could result in misleading information being provided to policy-makers. 相似文献