首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   960篇
  免费   75篇
  国内免费   226篇
测绘学   12篇
大气科学   285篇
地球物理   174篇
地质学   500篇
海洋学   183篇
天文学   16篇
综合类   13篇
自然地理   78篇
  2024年   4篇
  2023年   17篇
  2022年   44篇
  2021年   40篇
  2020年   25篇
  2019年   33篇
  2018年   31篇
  2017年   48篇
  2016年   58篇
  2015年   55篇
  2014年   72篇
  2013年   89篇
  2012年   26篇
  2011年   64篇
  2010年   42篇
  2009年   64篇
  2008年   78篇
  2007年   71篇
  2006年   57篇
  2005年   47篇
  2004年   43篇
  2003年   24篇
  2002年   30篇
  2001年   29篇
  2000年   34篇
  1999年   22篇
  1998年   18篇
  1997年   24篇
  1996年   8篇
  1995年   8篇
  1994年   10篇
  1993年   5篇
  1992年   6篇
  1991年   1篇
  1990年   3篇
  1989年   4篇
  1988年   3篇
  1987年   1篇
  1986年   8篇
  1985年   4篇
  1984年   4篇
  1983年   5篇
  1981年   1篇
  1978年   1篇
排序方式: 共有1261条查询结果,搜索用时 390 毫秒
181.
Based on the estimation of greenhouse gases (GHG) emissions and carbon sequestration of the total conversion of marshlands (TMC), marshlands conversion to paddy fields (MCPFs) and marshlands conversion to uplands (MCULs), this study revealed the contribution to the global warming mitigation (CGWM) of paddy fields versus uplands converted from marshlands in the Sanjiang Plain (excluding the Muling‐Xingkai Plain on south of Wanda Mountain), Heilongjiang Province, northeast China. The results showed that the total area of MCPFs and MCULs was 504.23 × 103 ha between 1982 and 2005. The CGWM per unit area was 45.53 t CO2eq/ha for MCPFs and that was 23.95 t CO2eq/ha for MCULs, with an obvious 47.40% reduction. The MCPFs and MCULs ecosystems acted as the carbon sink all of the year. As far as CGWM per unit area is concerned, MCPFs mitigated the greenhouse effect which was greater than MCULs. And it was effective that the implementation of the uplands transformed into paddy fields in Northeast China with regard to marshlands protection and croplands (including paddy fields and uplands) reclamation.  相似文献   
182.
In view of water pollutants becoming more complex, both anionic and cationic pollutants need to be removed. The multi‐pollutants simultaneous removal is paid more and more attention. Hence, development composite materials for treatment complex wastewater are the aim of this study. In this research, iron–nickel nanoparticles deposited onto aluminum oxide (α‐Al2O3) and carbon nanotubes (CNTs) to form nanocomposite materials Fe–Ni/Al2O3 and Fe–Ni/CNTs, respectively, were used as adsorbents. The adsorption capacities of Fe–Ni/Al2O3 and Fe–Ni/CNTs for AO7, HSeO, and Pb2+ were observed to be 5.46, 8.28, 27.02, and 25.6 mg/g, 15.29 and 17.12 mg/g, separately. The composite materials with negative charges were superior in adsorption of anionic pollutants. Using orthogonal experimental design and analysis of variance to co‐treat dye AO7, HSeO and Pb2+ in aqueous solutions, seven testing factors were included: (1) adsorbent types, (2) amount of iron, (3) solution pHs, (4) AO7 concentrations, (5) Pb2+ concentrations, (6) HSeO concentrations and (7) reaction time. The experimental results showed that the removal of complex pollutants AO7, HSeO, and Pb2+ on Fe–Ni/CNTs could reach up to 90% in the optimal treatment conditions. When using Fe–Ni/CNTs as the adsorbent, the sorption isothermals were well fitted in the Freundlich isotherm, and R2 could reach up to 0.98.  相似文献   
183.
National estimates of spatially-resolved cropland net primary production (NPP) are needed for diagnostic and prognostic modeling of carbon sources, sinks, and net carbon flux between land and atmosphere. Cropland NPP estimates that correspond with existing cropland cover maps are needed to drive biogeochemical models at the local scale as well as national and continental scales. Existing satellite-based NPP products tend to underestimate NPP on croplands. An Agricultural Inventory-based Light Use Efficiency (AgI-LUE) framework was developed to estimate individual crop biophysical parameters for use in estimating crop-specific NPP over large multi-state regions. The method is documented here and evaluated for corn (Zea mays L.) and soybean (Glycine max L. Merr.) in Iowa and Illinois in 2006 and 2007. The method includes a crop-specific Enhanced Vegetation Index (EVI), shortwave radiation data estimated using the Mountain Climate Simulator (MTCLIM) algorithm, and crop-specific LUE per county. The combined aforementioned variables were used to generate spatially-resolved, crop-specific NPP that corresponds to the Cropland Data Layer (CDL) land cover product. Results from the modeling framework captured the spatial NPP gradient across croplands of Iowa and Illinois, and also represented the difference in NPP between years 2006 and 2007. Average corn and soybean NPP from AgI-LUE was 917 g C m−2 yr−1 and 409 g C m−2 yr−1, respectively. This was 2.4 and 1.1 times higher, respectively, for corn and soybean compared to the MOD17A3 NPP product. Site comparisons with flux tower data show AgI-LUE NPP in close agreement with tower-derived NPP, lower than inventory-based NPP, and higher than MOD17A3 NPP. The combination of new inputs and improved datasets enabled the development of spatially explicit and reliable NPP estimates for individual crops over large regional extents.  相似文献   
184.
Exploring the environmental impact of dietary consumption has become increasingly important to understand the carbon-water-food nexus, vital to achieving UN sustainable development goals. However, the research on diet-based nexus assessment is still lacking. Here, we developed an Environmentally Extended Multi-Regional Input-Output (EE-MRIO) model with compiling a global MRIO table based on the latest Global Trade Analysis Project (GTAP) 10 database, where we specifically constructed a water withdrawal account and matched it to each economy at the sectoral level. The regional heterogeneity and synergy of carbon-water nexus affected by dietary patterns in nine countries was explored. The results show that: (1) Dietary consumption is the main use of water withdrawal for each country; Japan, the US, South Korea, and India have a high per capita dietary water footprint. Mainly due to consumption of processed rice, Japan has the highest per capita value of 488 M3/year, accounting for 63.4% of the total water footprint. (2) The total dietary carbon footprints in China, India, and the US are high, which is mainly caused by the high consumption of animal products (including dairy) either due to the large population (China, India) or animal-based diet (the US). Americans have the highest per capita dietary carbon footprint, reaching 755.4 kg/year, 2.76 times that of the global average. (3) Generally, imported/foreign footprints account for a greater share in dietary water and carbon footprints of developed countries with an animal-based diet. (4) In the nexus analysis, the US, Japan, and South Korea are key-nexus countries, vegetables, fruit and nuts, tobacco and beverages, and other food products are selected as key-nexus sectors with relatively high dietary water and carbon footprint. Furthermore, dietary consumption choices lead to different environmental impacts. It is particularly important to find a sustainable dietary route adapted to each country considering that heterogeneity and synergism exist in key-nexus sectors to achieve the relevant Sustainable Development Goals.  相似文献   
185.
IPCC于2022年4月正式发布了第六次评估报告(AR6)第三工作组(WGⅢ)报告《气候变化2022:减缓气候变化》,该报告以已发布的第一和第二工作组报告作为基础,评估了各领域减缓气候变化的进展。报告的第九章建筑章节系统全面地评估了全球建筑领域的温室气体排放现状、趋势和驱动因素,综述并评估了建筑减缓气候变化的措施、潜力、成本和政策。报告主要结论认为,全球建筑领域有可能在2050年实现温室气体净零排放,但如果政策措施执行不力,将有可能在建筑领域形成长达几十年的高碳锁定效应。报告的主要结论将成为全球建筑领域应对气候变化行动的重要参考,对于我国建筑领域实现碳达峰、碳中和目标也有非常重要的借鉴意义。  相似文献   
186.
This study examines the comparative effectiveness of two important proposed solutions to climate change—energy efficiency improvement and the development and use of renewable energy sources. We focus specifically on their impacts on carbon dioxide emissions by conducting fixed effects regression analysis of panel data pertaining to U.S. states. The analysis reveals a negative relationship between both remedies and carbon dioxide emissions. Although the effects of these potential solutions are statistically equivalent, renewable energy production has a slight edge. Reflecting upon these findings and the larger environmental problem, we caution against exclusive reliance on efficiency improvement and renewable energy to the neglect of other important actions, such as lifestyle modifications. A broad range of social changes, which incorporate the remedies investigated in this paper, are needed to limit long-term global temperature increases to the desired level.  相似文献   
187.
Our carbon-intensive economy has led to an average temperature rise of 1 °C since pre-industrial times. As a consequence, the world has seen increasing droughts, significant shrinking of the polar ice caps, and steady sea-level rise. To stall these issues’ worsening further, we must limit global warming to 1.5 °C. In addition to the economy’s decarbonization, this endeavour requires the use of negative-emissions technologies (NETs) that remove the main greenhouse gas, carbon dioxide, from the atmosphere. While techno-economic feasibility alone has driven the definition of negative-emissions solutions, NETs’ diverse, far-reaching implications demand a more holistic assessment. Here, we present a comprehensive framework, integrating NETs’ critical performance aspects of feasibility, effectiveness, and side impacts, to define the optimal technology mix within realistic outlooks. The resulting technology portfolios provide a useful new benchmark to compare carbon avoidance and removal measures and deliberately choose the best path to solve the climate emergency.  相似文献   
188.
周江  史群飞  王伟 《岩土工程技术》2012,26(4):212-214,F0003
通过对某工程中的钢筋混凝土梁采取粘贴碳纤维布的方式进行加固,并现场抽取试验梁进行了现场堆载实荷加载试验,对试验梁的挠度、裂缝开展情况和承载能力进行了全面分析,对该加固工程的效果进行了评价,供同行参考。  相似文献   
189.
In this first study of lignin geochemistry in the world’s longest river on an island, surface sediments were collected along the Kapuas River, three lakes in the upper river, a tributary in the lower river and a separate river during June-July 2007 and December 2007-January 2008. The samples were analyzed for lignin-derived phenols and bulk elemental and stable carbon isotope compositions. Λ values (the sum of eight lignin phenols, expressed as mg/100 mg organic carbon (OC)) ranged from 0.13 to 3.70. Ratios of syringyl/vanillyl (S/V) and cinnamyl/vanillyl (C/V) ranged from 0.34 to 1.18 and 0.28 to 1.40, respectively, indicating the presence of non-woody angiosperm tissues. The high vanillic acid to vanillin (Ad/Al)v (0.71-2.01) and syringic acid to syringaldehyde (Ad/Al)s (0.72-2.12) ratios indicate highly degraded lignin materials. In the upper Kapuas River, highly degraded soil materials discharged from lands that were barren as a result of deforestation activities were detected in the locations directly in those vicinities. The middle Kapuas River showed rapid organic matter degradation, probably due to the presence of fresh terrestrial and phytoplankton organic matter fueling the biogeochemical cycling. The Kapuas Kecil River, one of the two branches in the lower reach of the Kapuas River, showed higher levels and diagenesis of sedimentary organic matter due to input from anthropogenic sources and increased marine organic matter near the mouth. This study shows that different stretches along the river exhibit different levels and composition of sedimentary organic matter, as well as different carbon dynamics, which is directly attributable to the varying landscapes and quality of organic matter.  相似文献   
190.
Soil Organic Carbon (SOC) is one of the key soil properties, but the large spatial variation makes continuous mapping a complex task. Imaging spectroscopy has proven to be an useful technique for mapping of soil properties, but the applicability decreases rapidly when fields are partially covered with vegetation. In this paper we show that with only a few percent fractional maize cover the accuracy of a Partial Least Square Regression (PLSR) based SOC prediction model drops dramatically. However, this problem can be solved with the use of spectral unmixing techniques. First, the fractional maize cover is determined with linear spectral unmixing, taking the illumination and observation angles into account. In a next step the influence of maize is filtered out from the spectral signal by a new procedure termed Residual Spectral Unmixing (RSU). The residual soil spectra resulting from this procedure are used for mapping of SOC using PLSR, which could be done with accuracies comparable to studies performed on bare soil surfaces (Root Mean Standard Error of Calibration = 1.34 g/kg and Root Mean Standard Error of Prediction = 1.65 g/kg). With the presented RSU approach it is possible to filter out the influence of maize from the mixed spectra, and the residual soil spectra contain enough information for mapping of the SOC distribution within agricultural fields. This can improve the applicability of airborne imaging spectroscopy for soil studies in temperate climates, since the use of the RSU approach can extend the flight-window which is often constrained by the presence of vegetation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号