首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   116篇
  免费   2篇
  国内免费   14篇
地球物理   70篇
地质学   54篇
海洋学   2篇
综合类   2篇
自然地理   4篇
  2023年   1篇
  2022年   6篇
  2021年   4篇
  2019年   2篇
  2018年   1篇
  2017年   4篇
  2016年   2篇
  2015年   1篇
  2014年   1篇
  2013年   2篇
  2012年   2篇
  2011年   1篇
  2010年   2篇
  2009年   7篇
  2008年   28篇
  2007年   3篇
  2006年   5篇
  2005年   6篇
  2004年   3篇
  2003年   4篇
  2002年   11篇
  2001年   6篇
  1999年   4篇
  1998年   3篇
  1997年   3篇
  1995年   2篇
  1994年   7篇
  1993年   3篇
  1992年   3篇
  1991年   2篇
  1989年   1篇
  1988年   1篇
  1984年   1篇
排序方式: 共有132条查询结果,搜索用时 357 毫秒
111.
112.
The 1934–1935 Showa Iwo-jima eruption started with a silicic lava extrusion onto the floor of the submarine Kikai caldera and ceased with the emergence of a lava dome. The central part of the emergent dome consists of lower microcrystalline rhyolite, grading upward into finely vesicular lava, overlain by coarsely vesicular lava with pumice breccia at the top. The lava surface is folded, and folds become tighter toward the marginal part of the dome. The dome margin is characterized by two zones: a fracture zone and a breccia zone. The fracture zone is composed of alternating layers of massive lava and welded oxidized breccia. The breccia zone is the outermost part of the dome, and consists of glassy breccia interpreted to be hyaloclastite. The lava dome contains lava with two slightly different chemical compositions; the marginal part being more dacitic and the central part more rhyolitic. The fold geometry and chemical compositions indicate that the marginal dacite had a slightly higher temperature, lower viscosity, and lower yield stress than the central rhyolite. The high-temperature dacite lava began to effuse in the earlier stage from the central crater. The front of the dome came in contact with seawater and formed hyaloclastite. During the later stage, low-temperature rhyolite lava effused subaerially. As lava was injected into the growing dome, the fracture zone was produced by successive fracturing, ramping, and brecciation of the moving dome front. In the marginal part, hyaloclastite was ramped above the sea surface by progressive increments of the new lava. The central part was folded, forming pumice breccia and wrinkles. Subaerial emplacement of lava was the dominant process during the growth of the Showa Iwo-jima dome.Editorial Responsibility J. McPhie  相似文献   
113.
Abstract The Himeji–Yamasaki region in the Inner Zone of southwest Japan is underlain mainly by Late Cretaceous volcanic rocks called the Ikuno Group or the Hiromine and Aioi Groups. A new stratigraphic and geochronological study shows that the volcanic rocks in this area consist of 15 eroded caldera volcanoes between 82 and 65 Ma; they are, in order of decreasing age, the Hiromine, Hoden, Ibo, Okawachi, Seppikosan, Hayashida, Shinokubi, Fukusaki, Kurooyama, Ise, Fukadanigawa, Nagusayama, Matobayama, Yumesaki and Mineyama Formations. These calderas vary in diameter from 1 to 20 km and are bounded by steep unconformities; they coalesce and overlap each other. The individual caldera fills are composed mainly of single voluminous pyroclastic flow deposits, which are often interleaved with debris avalanche deposits and occasionally underlie lacustrine deposits. The intracaldera pyroclastic flow deposits are made up of massive, welded or non‐welded tuff breccia to lapilli tuff, and are characterized by their great thickness. The debris avalanche deposits are ill‐sorted breccia, generated by the collapse of the caldera wall toward the caldera floor during the pyroclastic‐flow eruption. The large calderas that are more than 10 km in diameter contain original values of approximately 100 km3 of intracaldera pyroclastic flow deposits. These large calderas are similar to the well‐known Valles‐type calderas in their dimensions, although it is uncertain whether their caldera floors are coherent plates or incoherent pieces. Conversely, the small calderas have diatreme‐like subsurface structures. The variety of the caldera volcanoes in this area is caused by the difference in the volume of caldera‐forming pyroclastic eruptions, as the large and small calderas coexisted. The caldera‐forming eruption rates in Late Cretaceous southwest Japan, including the studied area, were similar to those in late Cenozoic central Andes and northeast Honshu arc, Japan, but obviously smaller than those of late Cenozoic intracratonic caldera clusters in western North America and the Quaternary extensional volcanic arcs in Taupo, New Zealand. The widespread Late Cretaceous felsic igneous rocks in southwest Japan were generated by a long‐term accumulation of low‐rate granitic magmatism at the eastern margin of the Eurasian Plate.  相似文献   
114.
The Cappadocian volcanic field in central Anatolia (Turkey) is characterised by a sequence of 10 Neogene ignimbrites. The associated calderas have been partly dismantled and buried by subsequent tectonic and sedimentary processes and, therefore, cannot be readily recognized in the field. Recent progress in the understanding of the stratigraphic correlations and flow patterns has identified two main probable source areas for the ignimbrites. Detailed study of these areas, based on gravity surveys, remote sensing data (SPOT and ERS1 images) and digital elevation models (DEM), has provided evidence for two major caldera complexes and their relationship to old stratovolcanoes and Neogene tectonics. The older Nevsehir–Acigöl caldera complex, located between the towns of Acigöl, Nevsehir and Cardak, is inferred to be the source of the Kavak and Zelve ignimbrites. The Nevsehir–Acigöl caldera complex is defined mainly by a −35 mGal circular gravimetry anomaly about 15 km in diameter. The boundaries of this, now buried, caldera complex are shown by high gradients on the Bouguer gravity anomaly map. The younger Derinkuyu caldera complex, located between the Erdas stratovolcano and the Ciftlik basin, is inferred to be the source of the Sarimaden, Cemilköy, Gördeles and Kizilkaya ignimbrites. It is well-defined by a rectangular (35×23 km) gravity low (−30 mGal) with a positive high (+20 mGal) in the center. Gravity, remote sensing data and the DEM provide evidence that the Erdas stratovolcano, on the northern margin of the Derinkuyu caldera complex, represents the remnants of a large stratovolcano partly cut by one or more caldera collapses. The positive anomaly within the Derinkuyu caldera complex is centered on the 15-km-wide Sahin Kalesi volcanic massif. Field evidence and structural features inferred from the DEM and remote sensing data strongly suggest that this massif is a resurgent doming associated with the Gördeles ignimbrite eruption. High-resolution ERS1, SPOT and DEM images reveal that the transtensive regime, active at least since the Miocene, influenced the location of eruptive centers and caldera complexes in Cappadocia. The two caldera complexes are located in transtensive grabens. The subsidence of these grabens, continuing after the caldera collapse events, most likely resulted in the burying of the calderas and could explain the difficulties in identifying them in the field.  相似文献   
115.
116.
117.
The Gross Brukkaros inselberg is a dome structure with a crater-shaped central depression within Precambrian/Cambrian country rocks which was active as a depocenter during the Late Cretaceous. The formation of the structure was due to the intrusion and subsequent intermittent depletion of a shallow magma reservoir. Juvenile material has not been recognized hitherto. This is the first account of juvenile lapilli from within the epiclastic fill of the caldera structure. The lapilli are calciocarbonatites and magnesiocarbonatites in composition, but are characteristically low in elements such as P, Nb, Ba and Sr, otherwise typical of carbonatites. This signature, however, is also characteristic of carbonatites from surrounding volcanic centers and necks. The Brukkaros sediments suffered strong metasomatic-hydrothermal alteration, which introduced in a first stage fluids rich in Fe, Ti, Na, Nb, V, K (Ca?, CO2?), and in a second stage the Brukkaros sediments were silicified on a large scale and locally enriched in P, Th and Cr. Si is derived from desilication of the wall rocks (basement?, Nama sediments) of the magma reservoir. Cr was probably mobilized during alteration of the abundant doleritic detritus within the Brukkaros depocenter.  相似文献   
118.
王灿 《福建地质》1995,14(1):43-48
近年来的最新调研成果表明,叶家山破火山群由7个破火山和1个层状火山(喷发中心)所组成,各火山机构相互叠置,与卫星TM遥感影象解译成果相吻合。火山作用经历了6个阶段的火山喷发,周围发育有环状、放射状断裂和岩脉、岩墙,是省内较为典型的破火山群机构,是寻找火山岩非金属矿的有利部位。火山活动的构造环境为拉张环境,物质来源于地壳。  相似文献   
119.
本文首次研究了七宝山破火山口,对破火山口特征作了全面论述,尤其是发现破火山口产有两套火山——侵入杂岩,粗安质火山侵入杂岩和英安流纹质火山侵入杂岩,前者为慢源岩浆经破火山口中心式喷发形成,后者为陆壳同熔岩浆在破火山口演化晚期经火山复活作用产生。  相似文献   
120.
Sedimentation and welding processes of the high temperature dilute pyroclastic density currents and fallout erupted at 7.3 ka from the Kikai caldera are discussed based on the stratigraphy, texture, lithofacies characteristics, and components of the resulting deposits. The welded eruptive deposits, Unit B, were produced during the column collapse phase, following a large plinian eruption and preceding an ignimbrite eruption, and can be divided into two subunits, Units Bl and Bu. Unit Bl is primarily deposited in topographic depressions on proximal islands, and consists of multiple thin (< 1 m) flow units with stratified and cross-stratified facies with various degrees of welding. Each thin unit appears as a single aggradational unit, composed of a lower lithic-rich layer or pod and an upper welded pumice-rich layer. Lithic-rich parts are fines-depleted and are composed of altered country rock, fresh andesite lava, obsidian clasts with chilled margins, and boulders. The overlying Unit Bu shows densely welded stratified facies, composed of alternating lithic-rich and pumice-rich layers. The layers mantle lower units and are sometimes viscously deformed by ballistics. The sedimentary characteristics of Unit Bl such as welded stratified or cross-stratified facies indicate that high temperature dilute pyroclastic density currents were repeatedly generated from limited magma-water interactions. It is thought that dense brittle particles were segregated in a turbulent current and were immediately buried by deposition of hot, lighter pumice-rich particles, and that this process repeated many times. It is also suggested that the depositional temperature of eruptive materials was high and the eruptive style changed from a normal plinian eruption, through surge-generating explosions (Unit Bl), into an agglutinate-dominated fallout eruption (Unit Bu). On the basis of field data, welded pyroclastic surge deposits could be produced only under specific conditions, such as (1) rapid accumulation of pyroclastic particles sufficiently hot to weld instantaneously upon deposition, and (2) elastic particles' interactions with substrate deformation. These physical conditions may be achieved within high temperature and highly energetic pyroclastic density currents produced by large-scale explosive eruptions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号