首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   387篇
  免费   139篇
  国内免费   137篇
测绘学   1篇
大气科学   9篇
地球物理   52篇
地质学   500篇
海洋学   50篇
综合类   15篇
自然地理   36篇
  2024年   2篇
  2023年   3篇
  2022年   19篇
  2021年   24篇
  2020年   19篇
  2019年   19篇
  2018年   20篇
  2017年   16篇
  2016年   35篇
  2015年   29篇
  2014年   25篇
  2013年   36篇
  2012年   23篇
  2011年   31篇
  2010年   31篇
  2009年   43篇
  2008年   27篇
  2007年   21篇
  2006年   35篇
  2005年   37篇
  2004年   16篇
  2003年   24篇
  2002年   17篇
  2001年   15篇
  2000年   13篇
  1999年   22篇
  1998年   12篇
  1997年   9篇
  1996年   11篇
  1995年   8篇
  1994年   3篇
  1993年   5篇
  1992年   7篇
  1991年   1篇
  1990年   4篇
  1989年   1篇
排序方式: 共有663条查询结果,搜索用时 15 毫秒
11.
The minerals of Oldoinyo Lengai natrocarbonatite lavas are unstable under atmospheric conditions. Subsolidus mineral assemblages in natrocarbonatites were studied in 105 samples from contemporary eruptions ranging from present day to about 100 years old. The subsolidus minerals in natrocarbonatites were formed (i) along cracks on the lava surface from hot gases escaping during cooling, (ii) as atmospheric alteration by solution of water-soluble minerals, in particular halides and gregoryite, and by hydration of nyerereite under the influence of meteoric water and (iii) by reaction with fumarole gases. After solidification, the lavas were cut by a network of thin cracks, the edges of which are covered by polymineralic encrustations. Samples collected 2–24 h after eruption contain nahcolite, trona, sylvite, and halite with accessory kalicinite and villiaumite. Atmospheric humidity results immediately (≥ 2 h after eruption) in alteration of black lavas that is marked by the appearance of white powdery thermonatrite with nahcolite on the lava surface. Subsequent reaction (weeks, months, years) of natrocarbonatite with meteoric water and the atmosphere results in the formation of pirssonite, gaylussite, shortite, trona, thermonatrite, nahcolite and calcite. Generally, the first important step is the formation of pirssonite and the end-members are calcite carbonate rocks or loose aggregates. Fumarolic activity is common for the active northern crater of the volcano. Reaction of hot (54–141 °C) fumarolic gases with natrocarbonatite leads to the formation of sulphur, gypsum, calcite, anhydrite, monohydrocalcite, barite and celestine. Changes in mineralogy of the natrocarbonatite lead to substantial chemical transformation. The most obvious chemical changes in this process are the loss of Na, K, Cl and S, combined with an increase in H2O, Ca, Sr, Ba, F and Mn. The oxygen and carbon isotopic composition of altered natrocarbonatites shows a significant shift from the primary “Lengai Box” to high values of δ18O and δ13C. Calcite exhibits δ13C values between − 2‰ and − 4‰ PDB and δ18O values of + 23‰ to + 26‰ SMOW. The observed assemblages of secondary minerals formed by reaction with atmosphere and meteoric water, the changes in chemical composition of the natrocarbonatite and field observations suggest that alteration of natrocarbonatite is an open-system low-temperature process. It takes place at temperatures between 8 and 43 °C with the addition of H2O to the system and the removal of Na, K, Cl and S from the carbonatites. Low-temperature thermodynamic models developed for alkali carbonate systems can be used for the interpretation of Oldoinyo Lengai subsolidus mineralization.  相似文献   
12.
Natural calcite from Kuerle, Xinjiang, China, shows orange-red fluorescence when exposed to short-wave ultraviolet (UV) light (Hg 253.7 nm). Photoluminescence (PL) emission and excitation spectra of the calcite are observed at room temperature in detail. The PL emission spectrum under 208 nm excitation consists of three bands: two UV bands at 325 and 355 nm and an orange-red band at 620 nm. The three bands are ascribed to Pb2+, Ce3+ and Mn2+, respectively, as activators. The Pb2+ excitation band is observed at 243 nm, and the Ce3+ excitation band at 295 nm. The Pb2+ excitation band is also observed by monitoring the Ce3+ fluorescence, and the Pb2+ and Ce3+ excitation bands, in addition to six Mn2+ excitation bands, are also observed by monitoring the Mn2+ fluorescence. These indicate that four types of the energy transfer can occur in calcite through the following processes: (1) Pb2+ → Ce3+, (2) Pb2+ → Mn2+, (3) Ce3+ → Mn2+ and (4) Pb2+ → Ce3+ → Mn2+.  相似文献   
13.
Major geotechnical problems in construction involving silty–clayey soils are due to their low strength, durability and high compressibility of soft soils, and the swell–shrink nature of the overconsolidated swelling soils. Confronted with these problems, a suitable ground improvement technique is needed, for deep excavations in soft clays, for stability, durability and deformation control. Cement-stabilization is one of the alternatives. An increase in strength and durability, reduction in deformability are the main aims of this method. Conventional cement-stabilization methods are used mainly for surface treatment. However, the use of cement has recently been extended to a greater depth in which cement columns were installed to act as a type of soil reinforcement (deep cement–soil mixing and cement jet grouting). In situ engineering properties of these silty–clayey soils are often variable and difficult to predict. For this reason cement-stabilization methods have a basic target to control the aforementioned engineering properties of these clays so that the properties of a silty–clayey soil become more like the properties of a soft rock such as clayey shale or lightly cemented sandstone. So cement-stabilization of these soils is essential to control their engineering properties and to predict their engineering behaviour for construction. In an effort to predict, classify and study the suitability of silty–clayey soils for cement-stabilization both slaking and unconfined compressive strength tests were carried out on clayey–sand mixtures consisted of two types of clays, kaolin and bentonite. Finally diagrams were prepared to study the variation of slaking and strength due to compaction, curing time and cement percentage and also to predict areas of efficient cement-stabilization.  相似文献   
14.
Mn K-edge EXAFS spectroscopy of solid-solution samples encompassing the complete MnCO3–CaCO3 series shows that first-shell Mn–O distances deviate little from the 2.19-Å distance observed in pure MnCO3. Very slight lengthening is observed only in the limiting case of dilute Mn(II) calcite solid solutions, where the Mn–O distance is 2.21 Å. The observed nearly complete structural relaxation and the composition independence of the Mn–O distance are consistent with the Pauling model behavior of solid solutions, and agree with previous studies showing a high degree of relaxation around hetero-sized substituents in the calcite structure. Strain occurs through bond bending, which is facilitated by the exclusively corner-sharing topology of calcite. Observed distances from Mn to more distant neighbors show significant variation across the solid-solution series that resembles Vegard's law-type behavior but reflects averaging. The high degree of relaxation suggests modest enthalpies of mixing in the solution, consistent with calorimetric studies.  相似文献   
15.
鄂尔多斯盆地中部奥陶系方解石脉中包裹体流体势研究   总被引:5,自引:2,他引:5  
结合前人研究成果,归纳出了一种利用盐水包裹体均一温度与盐度确定流体势的方法,并对鄂尔多斯盆地中部气田奥陶系方解石脉中包裹体进行了流体势计算,推算出了古流体运移方向。  相似文献   
16.
通过目前国内外现有资料的对比研究,对严重影响石太高速公路修建和运营的柏井采空区采用压力注浆的方法,充填采空区上覆的裂隙冒落带,以达到加固地基的目的。灌注材料选用水泥和粘土,水固比为1:1.5,依据地面构造物不同,在桥涵地段采用1:0.8:0.7(水:水泥:粘土,下同)的配比,在边坡地段采用1:0.5:1的与比,在一般路段采用1:0.3:1的配比,灌注浆液的结石体在采空区及上覆的裂隙冒落带中充填率达  相似文献   
17.
水泥搅拌桩与锚杆组合支护结构的力学参数研究   总被引:1,自引:0,他引:1  
赵剑豪  陈振建  方家强 《岩土力学》2004,25(Z2):265-270
水泥搅拌桩--锚杆组合支护结构是一种新型的组合支护结构,笔者采用有限元方法进行各相关力学参数研究,分析了该组合支护结构的受力特性及变形性态.通过计算结果与实测数据的比较,表明本文所得结论对该组合支护结构的应用有一定的指导价值.  相似文献   
18.
We study the mineralogical changes suffered by specimens of natural miocene red and green continental sandstones (from Pozuelos Formation and Tiomayo Formation) cropping out in the Argentine Puna that increase their bulk magnetic susceptibility and change color when thermally treated. We hypothesize that on heating siderite, which is present in small quantities as cement in the studied sandstones, would oxidize and decompose into maghemite and/or magnetite. Subsequent heating to higher temperatures sometimes would bring about the conversion of maghemite and/or magnetite to hematite. Mössbauer spectroscopy proved to be a very valuable tool for the determination of the presence of siderite in small amounts in the studied samples. The present results show that further work is needed in order to fully understand the mineralogical changes suffered by continental sandstones during heating. The characterization of such changes occurred during laboratory routines is relevant, since they can help to better understand natural processes.  相似文献   
19.
通过天津地区几例钻孔灌注桩桩底注浆的静载荷试桩结果 ,分析天津地区钻孔灌注桩桩底注浆单桩竖向极限承载力标准值的估算方法  相似文献   
20.
Calcite dendrite crystals are important but poorly understood components of calcite travertine that forms around many hot springs. The Lýsuhóll hot-spring deposits, located in western Iceland, are formed primarily of siliceous sinters that were precipitated around numerous springs that are now inactive. Calcite travertine formed around the vent and on the discharge apron of one of the springs at the northern edge of the area. The travertine is formed largely of two types (I and II) of complex calcite dendrite crystals, up to 1 cm high, that grew through the gradual addition of trilete sub-crystals. The morphology of the dendrite crystals was controlled by flow direction and the competition for growth space with neighbouring crystals. Densely crowded dendrites with limited branching characterize the rimstone dams whereas widely spaced dendrites with open branching are found in the pools. Many dendrite bushes in the pools nucleated around plant stems. Growth of the dendrite crystals was seasonal and incremental. Calcite precipitation was driven by rapid CO2 degassing of CO2-rich spring waters during the spring and summer. During winter, when snow covered the ground and temperatures were low, opal-A precipitated on the exposed surfaces of the dendrites. Segmentation of dendrite branches by discontinuities coated with opal-A and overgrowth development around sub-crystals resulted from this seasonal growth cycle. The calcite dendrite crystals in the Lýsuhóll travertine differ in morphology from those at other hot springs, such as those at Lake Bogoria, Kenya, and Waikite in New Zealand. Comparison with the calcite dendrite crystals found at those sites shows that dendrite morphology is site-specific and probably controlled by carbonate saturation levels that, in turn, are controlled by the rate of CO2 degassing and location in the spring outflow system.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号