全文获取类型
收费全文 | 1831篇 |
免费 | 15篇 |
国内免费 | 154篇 |
专业分类
测绘学 | 62篇 |
大气科学 | 95篇 |
地球物理 | 434篇 |
地质学 | 1106篇 |
海洋学 | 137篇 |
天文学 | 38篇 |
综合类 | 4篇 |
自然地理 | 124篇 |
出版年
2024年 | 25篇 |
2023年 | 69篇 |
2022年 | 49篇 |
2021年 | 69篇 |
2020年 | 162篇 |
2019年 | 93篇 |
2018年 | 120篇 |
2017年 | 181篇 |
2016年 | 117篇 |
2015年 | 139篇 |
2014年 | 239篇 |
2013年 | 360篇 |
2012年 | 215篇 |
2011年 | 6篇 |
2010年 | 8篇 |
2009年 | 14篇 |
2008年 | 11篇 |
2007年 | 8篇 |
2006年 | 18篇 |
2005年 | 19篇 |
2004年 | 16篇 |
2003年 | 13篇 |
2002年 | 21篇 |
2001年 | 3篇 |
2000年 | 1篇 |
1999年 | 2篇 |
1998年 | 3篇 |
1997年 | 2篇 |
1996年 | 4篇 |
1995年 | 3篇 |
1993年 | 2篇 |
1992年 | 5篇 |
1991年 | 1篇 |
1990年 | 2篇 |
排序方式: 共有2000条查询结果,搜索用时 0 毫秒
81.
Palaeo- and Neo-Tethyan-related magmatic and metamorphic units crop out in Konya region in the south central Anatolia. The Neotethyan assemblage is characterized by mélange and ophiolitic units of Late Cretaceous age. They tectonically overlie the Middle Triassic–Upper Cretaceous neritic to pelagic carbonates of the Tauride platform. The metamorphic sole rocks within the Konya mélange crop out as thin slices beneath the sheared serpentinites and harzburgites. The rock types in the metamorphic sole are amphibolite, epidote-amphibolite, garnet-amphibole schist, plagioclase-amphibole schist, plagioclase-epidote-amphibole schist and quartz-amphibole schist. The geochemistry of the metamorphic sole rocks suggests that they were derived from the alkaline (seamount) and tholeiitic (E-MORB, IAT and boninitic type) magmatic rocks from the upper part of the Neotethyan oceanic crust. Four samples from the amphibolitic rocks yielded 40Ar/39Ar isotopic ages, ranging from 87.04 ± .36 Ma to 84.66 ± .30 Ma. Comparison of geochemistry and geochronology for the amphibolitic rocks suggests that the alkaline amphibolite (seamount-type) cooled below 510 ± 25 °C at 87 Ma whereas the tholeiitic amphibolites at 85 Ma during intraoceanic thrusting/subduction. When all the evidence combined together, the intraoceanic subduction initiated in the vicinity of an off-axis plume or a plume-centered spreading ridge in the Inner Tauride Ocean at 87 Ma. During the later stage of the steady-state subduction, the E-MORB volcanics on the top of the down-going slab and the arc-type basalts (IAT/boninitic) detached from the leading edge of the overriding plate, entered the subduction zone after ~2 my and metamorphosed to amphibolite facies in the Inner Tauride Ocean. Duration of the intraoceanic detachment (~87 Ma) and ophiolite emplacement onto the Tauride-Anatolide Platform (Tav?anl? Zone), followed by subsequent HP/LT metamorphism (~82 Ma) spanned ~5 my in the western part of the Inner Tauride Ocean. 相似文献
82.
南盘江—右江盆地具独特的盆地构造演化历史和背景,是西南低温成矿域的重要组成部分,广泛发育有Au-As-Sb-Hg-Tl等低温热液矿床,金锑成矿作用与盆地构造演化密切相关。本文系统总结南盘江—右江盆地构造演化过程和历史,分析盆地演化对沉积地层、沉积相带分布、古地理变迁等的控制作用。盆地内金锑矿床受构造和有利岩性组合控矿明显,结合南盘江—右江盆地内Cu-W-Sn-Pb-Zn-Au-Sb-Hg等矿床空间分布特征及规律,探讨盆地构造演化与金锑成矿作用和成矿效应的关系。类比斑岩-矽卡岩-浅成低温热液型多金属矿床最新研究成果,建立南盘江—右江盆地以陆内斑岩型铜矿床为中心,上部或边部矽卡岩型铜矿床、脉状钨-锡-银-铅-锌矿床和远端低温热液金-银-锑-汞矿床的找矿预测模型,模型对南盘江—右江成矿区深部斑岩型矿床或与斑岩体有关的矽卡岩型矿床的找矿勘查具有重要意义。 相似文献
83.
《International Geology Review》2012,54(16):2036-2056
ABSTRACTThe Chinese Southwest Tianshan Orogenic Belt is located along the boundary between the Central Asian Orogenic Belt (CAOB) and the Tarim Block (TB), NW China. It records the convergence of the Tarim Block and the Middle Tianshan, and is, therefore, a crucial region for understanding the Eurasia continental growth and evolution. The Wulagen (geographical name) metasedimentary rocks of the Wuqia area (mainly metamorphic sandstones and mica schists) form one of the metamorphic terranes in the Southwestern Tianshan Orogenic Belt. The geochronology of these rocks is poorly known, which hampers our understanding of the tectonic evolution of the belt. We analyzed 517 zircon grains for detrital zircon U–Pb dating and 93 zircon grains for in situ Lu–Hf isotopic compositions from the Wulagen metasedimentary rocks. The analyzed zircon grains yield Neoarchean to late Paleozoic U–Pb ages with major age peaks at ~2543 Ma, 1814 Ma, 830 Ma, 460 Ma, and the youngest cluster of zircon (magmatogene) ages is 395 Ma. The zircon U–Pb data show that the late Paleozoic (Early Devonian) is the maximum depositional age of the Wulagen metasedimentary rocks, rather than the previously considered Precambrian period. The zircons with Paleozoic ages yield εHf(t) values of ?22.0 to +11.3 and two-stage model ages (TDM2) of 3.95 to 1.30 Ga, suggesting that the parental magmas were formed from partial melting of pre-existing crustal rocks. Our zircon U–Pb geochronology and Hf isotopic data indicate the major source regions for the Wulagen metasedimentary rocks was the Kyrgyzstan North Tianshan. The zircon age population of 600–400 Ma (peak at ~460 Ma) has negative εHf(t) values (?15.0 to ?0.6) and Mesoproterozoic two-stage model ages, suggesting that the early Paleozoic magmatism resulted mainly from the melting of ancient crust, which played an important role in crustal evolution in the southern CAOB. 相似文献
84.
A new approach for simulating the excavation and construction of subsequent panels is proposed to investigate the effects from the installation of diaphragm walls on the surrounding and adjacent buildings. The method has been combined with a 3-D nonlinear analysis and a constitutive law providing bulk and shear modulus variation, depending on the stress path (loading, unloading, reloading). From the application of the method in a normally to slightly over-consolidated clayey soil it was found that the panel length is the most affecting factor of ground movements and lateral stress reduction during panel installation. Moreover, from the evaluation of horizontal stress reduction and the variation of horizontal displacements arises that the effects from the construction of a panel are mainly limited to a zone within a distance of the order of the panel length. The effects on an adjacent building have also been investigated by applying a full soil–structure interaction including the whole building. Settlement profiles and settlements are given at specific points as increasing with subsequent installation of panels, providing the ability of specific monitoring guidelines for the upcoming construction of the diaphragm wall in front of the building. Contrary to lateral movements, which mostly take place at the panel under construction, it was found that the effect of settlements covers a larger area leading to a progressive settlement increase. The effect highly depends on the distance from the panel under construction. 相似文献
85.
The role of the seismic soil–pile–structure interaction (SSPSI) is usually considered beneficial to the structural system under seismic loading since it lengthens the lateral fundamental period and leads to higher damping of the system in comparison with the fixed-base assumption. Lessons learned from recent earthquakes show that fixed-base assumption could be misleading, and neglecting the influence of SSPSI could lead to unsafe design particularly for structures founded on soft soils. In this study, in order to better understand the SSPSI phenomena, a series of shaking table tests have been conducted for three different cases, namely: (i) fixed-base structure representing the situation excluding the soil–structure interaction; (ii) structure supported by shallow foundation on soft soil; and (iii) structure supported by floating (frictional) pile foundation in soft soil. A laminar soil container has been designed and constructed to simulate the free field soil response by minimising boundary effects during shaking table tests. In addition, a fully nonlinear three dimensional numerical model employing FLAC3D has been adopted to perform time-history analysis on the mentioned three cases. The numerical model adopts hysteretic damping algorithm representing the variation of the shear modulus and damping ratio of the soil with the cyclic shear strain capturing the energy absorbing characteristics of the soil. Results are presented in terms of the structural response parameters most significant for the damage such as foundation rocking, base shear, floor deformation, and inter-storey drifts. Comparison of the numerical predictions and the experimental data shows a good agreement confirming the reliability of the numerical model. Both experimental and numerical results indicate that soil–structure interaction amplifies the lateral deflections and inter-storey drifts of the structures supported by floating pile foundations in comparison to the fixed base structures. However, the floating pile foundations contribute to the reduction in the lateral displacements in comparison to the shallow foundation case, due to the reduced rocking components. 相似文献
86.
The Cenomanian–Turonian Boundary Event (CTBE) event is not associated with a transgression on the southern margin of the Subalpine Basin, but with a steady shallowing-up trend beginning in the lower half of the δ13C positive shift. The SW–NE Rouaine Fault had a complex role, first in isolating a black shale basin to the west and a large, deep submarine plateau devoid of black shale to the east, then by a strike-slip movement that induced a forced progradation to the north of the southern platform in the eastern compartment. This compressive tectonic reactivation of the southern margin began around the deposition of the local equivalent of the Plenus bed of boreal basins, as shown by correlation supported by both isotope and palaeontological data. Other local data are pieced together to suggest that the whole of SE France underwent a short-lived transpressive tectonic pulse around the Cenomanian–Turonian boundary, probably connected with the early compressive movement of Africa vs. Europe. On a larger scale, other published data suggest that this pulse could be a global one. It is coeval with renewed thrust loading, volcanism and transgression in the North-American Western Interior, local emergences during the event along the eastern Atlantic margin, suggesting a slight tendency to inversion of the margin, and a tilting to the east of the North-Africa plate that could explain the large transgression recorded from Morocco to Tunisia on the Saharan Craton.New isotope and palaeontological (coiling ratio of Muricohedbergella delrioensis) data from SE France suggest that two coolings of suprabasinal importance occurred just before and during the build-up of the d13C shift, including the boreal “Plenus Marls“, especially its middle limestone bed and its SE France equivalent.Regarding the extinction of the genus Thalmaninella and Rotalipora and during the event, neither anoxia nor climate changes can fully explain the palaeontological crisis, given that Rotalipora cushmani crosses the first phase of anoxia without harm, as well as the two coolings, not only in SE France but on a large scale, as shown by the correlation of the published data. This extinction needs alternative explanations as we challenge both anoxia and climate as major causes. 相似文献
87.
A two-and-a-half-dimensional (2.5-D) coupled finite element–boundary element (FE–BE) model is presented to simulate the three-dimensional dynamic interaction between saturated soils and structures with longitudinally invariant geometries. A regularized 2.5-D boundary integral equation for saturated porous media is derived that avoids the evaluation of singular traction integrals. The 2.5-D coupled FE–BE model is established by using the continuity conditions on the soil–structure interface. The developed model is verified through comparison with an existing semi-analytical method. Two case studies of a tunnel embedded in a poroelastic half-space and the efficiency of a vibration isolating screen are presented. 相似文献
88.
Parham Ahmadi Massimo Coltorti Takeshi Kuritani Yue Cai Anna Maria Fioretti 《International Geology Review》2019,61(2):150-174
Tertiary volcanic rocks in northwestern Firoozeh, Iran (the Meshkan triangular structural unit), constitute vast outcrops (up to 250 km2) of high-Mg basaltic andesites to dacites that are associated with high-Nb hawaiites and mugearites. Whole-rock 40Ar/39Ar ages show a restricted range of 24.1 ± 0.4–22.9 ± 0.5 Ma for the volcanic rocks. The initial ratios of 87Sr/86Sr and 143Nd/144Nd vary from 0.703800 to 0.704256 and 0.512681 to 0.512877, respectively, in the high-Mg basaltic andesites–dacites. High-Th contents (up to 11 ppm) and Sr/Y values (27–100) and the isotopic composition of the subalkaline high-Mg basaltic andesites–dacites indicate derivation from a mantle modified by slab and sediment partial melts. Evidence such as reverse zoning and resorbed textures and high Ni and Cr contents in the evolved samples indicate that magma mixing with mafic melts and concurrent fractional crystallization lead to the compositional evolution of this series. The high-Nb hawaiites and mugearites, by contrast, have a sodic alkaline affinity and are silica undersaturated; they are also enriched in Nb (up to 47 ppm) and a wide range of incompatible trace elements, including LILE, LREE, and HFSE. Geochemistry and Sr–Nd isotopic compositions of the high-Nb hawaiites and mugearites suggest derivation from a mantle source affected by lower degrees of slab melts. Post-orogenic slab break-off is suggested to have prompted the asthenospheric upwelling that triggered partial melting in mantle metasomatized by slab-derived melts. 相似文献
89.
The Late Jurassic Jingshan granite located at the south-eastern margin of the North China Craton contains abundant garnets which can be subdivided into three types based on texture and composition: (i) euhedral garnet in mafic biotite and garnet rich enclave (Grt I), (ii) coarse-grained garnet (Grt II) in the host granite, and (iii) small euhedral garnet in aplite (Grt III). In general, Grt I has higher FeO, CaO and lower MnO contents than Grt II. Grt III has higher Mn, but lower Ca contents than others. Grt I has lower MREE and HREE contents than Grt II. Grt III has prominent and distinctly negative Eu anomaly as well as higher MREE composition compared to the others. Systematic variations in oxygen isotope compositions are observed among the three garnet types, with δ18O values of <3.8‰ in most of Grt I, 3.8–4.7‰ in most Grt II (for inclusion-free garnets), and typically >4.7‰ in Grt III. Some of the Grt II and Grt III display two distinct zonings with cores having similar major and trace element compositions to Grt I.Cathodoluminescence (CL) images revealed that the zircons from different garnet-bearing samples possess fine-scale oscillatory zoned magmatic rims with inherited cores. In situ zircon U–Pb dating and trace element analyses show that the dark-luminescent magmatic rims all have Jurassic concordia ages (∼160 Ma) and similar trace element patterns. Most of the inherited cores also display similar Triassic ages of 210–236 Ma, which is similar to the ages of ultrahigh pressure (UHP) metamorphic rocks of the Dabie–Sulu orogen (230 Ma). In addition, Jurassic concordia ages were also found in a zircon inclusion in Grt I, implying that the Grt I was formed shortly before the main magmatic event. The age data suggest that the three different garnet types may be genetically related and modified by cogenetic magmatic events.Based on the zircon U–Pb ages from different garnet-bearing samples, the major element, trace element, oxygen isotope, and zoning textures of the three kinds of garnet we suggest that Grt I may be peritectic garnet, whereas Grt II and III are probably the results of magmatic dissolution–precipitation processes and re-equilibration of garnets with changing magmatic conditions during melting, differentiation, crystallization, and cooling within the granite. We conclude from the oxygen isotopic character of the garnets and ages of the zircons that the source rocks for the Jingshan granites are from Dabie–Sulu orogen representing the South China Craton. 相似文献
90.
In South-East Asia, sedimentary basins displaying continental Permian and Triassic deposits have been poorly studied. Among these, the Luang Prabang Basin (North Laos) represents a potential key target to constrain the stratigraphic and structural evolutions of South-East Asia. A combined approach involving sedimentology, palaeontology, geochronology and structural analysis, was thus implemented to study the basin. It resulted in a new geological map, in defining new formations, and in proposing a complete revision of the Late Permian to Triassic stratigraphic succession as well as of the structural organization of the basin. Radiometric ages are used to discuss the synchronism of volcanic activity and sedimentation.The Luang Prabang Basin consists of an asymmetric NE-SW syncline with NE-SW thrusts, located at the contact between Late Permian and Late Triassic deposits. The potential stratigraphic gap at the Permian–Triassic boundary is therefore masked by deformation in the basin. The Late Triassic volcaniclastic continental deposits are representative of alluvial plain and fluvial environments. The basin was fed by several sources, varying from volcanic, carbonated to silicic (non-volcanic). U–Pb dating of euhedral zircon grains provided maximum sedimentation ages. The stratigraphic vertical succession of these ages, from ca. 225, ca. 220 to ca. 216 Ma, indicates that a long lasting volcanism was active during sedimentation and illustrates significant variations in sediment preservation rates in continental environments (from ∼100 m/Ma to ∼3 m/Ma). Anhedral inherited zircon grains gave older ages. A large number of them, at ca. 1870 Ma, imply the reworking of a Proterozoic basement and/or of sediments containing fragments of such a basement. In addition, the Late Triassic (Carnian to Norian) sediments yielded to a new dicynodont skull, attributed to the Kannemeyeriiform group family, from layers dated in between ∼225 and ∼221 Ma (Carnian). 相似文献