首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   122篇
  免费   18篇
  国内免费   22篇
大气科学   26篇
地球物理   23篇
地质学   19篇
海洋学   86篇
综合类   4篇
自然地理   4篇
  2023年   2篇
  2022年   3篇
  2021年   9篇
  2020年   3篇
  2019年   15篇
  2018年   7篇
  2017年   18篇
  2016年   20篇
  2015年   5篇
  2014年   11篇
  2013年   6篇
  2012年   8篇
  2011年   13篇
  2010年   8篇
  2009年   5篇
  2008年   4篇
  2007年   11篇
  2006年   4篇
  2005年   2篇
  2004年   3篇
  2003年   2篇
  2001年   3篇
排序方式: 共有162条查询结果,搜索用时 11 毫秒
31.
油井射流排砂泵扩散管出口流场分析   总被引:1,自引:0,他引:1  
依据RNG-ε双方程湍流模型,建立油井射流排砂泵固液两相流方程;在此基础上,应用CFD计算机分析软件,对比分析了扩散管出口突变结构和渐变结构的射流排砂泵的效率、固相比、速度场分布、压力场分布。数值分析结果表明:射流泵扩散管出口采用渐变结构,可以有效减少固液两相流的逆向速度矢量,是提高射流排砂泵综合性能的有效手段。  相似文献   
32.
In the first part of this study, results of a computational fluid dynamics simulation over an array of cubes have been validated against a set of wind-tunnel measurements. In Part II, such numerical results are used to investigate spatially-averaged properties of the flow and passive tracer dispersion that are of interest for high resolution urban mesoscale modelling (e.g. non resolved obstacle approaches). The results show that vertical profiles of mean horizontal wind are linear within the canopy and logarithmic above. The drag coefficient, derived from the numerical results using the classical formula for the drag force, is height dependent (it decreases with height). However, a modification of the formula is proposed (accounting for subgrid velocity scales) that makes the drag coefficient constant with height. Results also show that the dispersive fluxes are similar in magnitude to the turbulent fluxes, and that they play a very important role within the canopy. Vertical profiles of turbulent length scales (to be used in kl closure schemes, where k is the turbulent kinetic energy and l a turbulent length scale) are also derived. Finally the distribution of the values around the mean over the reference volumes are analysed for wind and tracer concentrations.  相似文献   
33.
This paper investigates the intact and damage survivability of a floating–moored Oscillating Water Column (OWC) device using physical model experiments and Computational Fluid Dynamics (CFD) simulations. Different extreme wave conditions have been tested using irregular and regular wave conditions. The device was moored to the tank floor via four vertical taut lines and the effect of the mooring line pre–tension on the device response was studied. It was found that the instantaneous position of the floating device was a key factor in the survivability analysis such that a certain irregular wave train that might not include the largest wave could induce the maximum response. Reducing the pre–tension minimized the maximum surge, but significantly increased the maximum tension due to mooring slack events causing snatch loads. A design regular wave with a period equal to the peak period and a height of 1.9–2.0 times the significant wave height could reasonably predict the same maximum line tension as the irregular sea state, but a smaller wave height was required to achieve the maximum surge. A single failure in the mooring system increased the maximum tension by 1.55 times the intact tension. For a damaged mooring system, using the same design regular wave condition derived from the survivability analysis with an intact mooring system could result in overestimating the maximum tension by more than 20% in comparison to the tension from the irregular sea state, but a smaller regular wave height or a different regular wave condition representing another sea state could lead to the same maximum tension. This highlighted the importance of investigating survival conditions with a damaged mooring system instead of simply using the same conditions derived for the intact mooring system.  相似文献   
34.
通过数值模拟和模型试验方法对一新型的Spar平台——多立柱式Spar平台的涡激运动特性进行研究。平台硬舱为四根圆柱方形阵列布置加方形中心井的形式,各柱间会产生复杂的相互干扰,不同于常规的单立柱Spar平台或半潜式平台,因此对其开展相应的涡激运动研究具有重要意义。研究主要关注的是不同来流角、不同流速下平台的涡激运动特性。通过涡激运动时的横荡运动、水平面内运动轨迹、首摇运动和水动力系数及绕流流场的分析,可得:在折合速度约为6~8范围内,平台横荡运动存在明显的“锁定”现象(0°来流角无侧板时“锁定”范围约为Ur=7~10)。在0°来流角下较高流速时,减涡侧板对涡激运动有明显的抑制效果。平台的运动轨迹近似与平台硬舱截面的对角线平行(0°来流角除外),这不同于常规的单立柱Spar平台。此外,试验中还观察到较明显的首摇运动。涡激运动时各柱间绕流存在复杂的相互干扰,而在柱后形成共同的涡结构。  相似文献   
35.
An extensive experimental investigation on four SWATH hull forms has been conducted in calm water and in regular waves at University of Naples Federico II. Calm water tests have been analyzed in the range of Froude number FrT from 0.1 to 0.6. For all four SWATH configurations at the speed, corresponding to FrT 0.32, the behaviour in regular waves has been tested. The results of heave, pitch and vertical accelerations are presented in nondimensional form as RAO. For the “most promising” SWATH #4 configuration, a set of stabilizing fins have been designed and an active stabilization system has been developed. The developed SWATH#5 has been tested in calm water on three displacements in the range of FrT from 0.1 to 0.65. The dynamic wetted surface has been identified and the residual resistance coefficient CR as well as RT/Δ are reported. Seakeeping tests have been performed in regular head sea and in head and following irregular sea at FrT = 0.50. The conditions for the occurrence of dynamic longitudinal instabilities have been identified. The results allows to comment the effect of slenderness of struts and SWATH’s immersed bodies on resistance and seakeeping and concerns the applicability of SWATH concept to small craft.  相似文献   
36.
Ship-generated waves and return currents are capable of re-suspending significant quantities of bottom and bank sediments.However,most of the previous studies done on the subject do not show how and where sediment is re-suspended by the wakes and the directions of net transport.In this paper,a 3D numerical model based on hydro-sedimentary coupling is presented to search the relationship between the sediment movement,and the pattern of ship-generated waves around and far away from the vessel and the return currents around the ships.The hydrodynamic model is based on 3D Navier-Stokes equations including the standard k-ε model for turbulence processes,and the sediment transport model is based on a 3D equation for the re-suspended sediment transport.The computation results show that the areas of sediment concentration and transport(whether by resuspension or by the bedload) depend mainly on the position,the speed of the ship in the waterways,the kinematics of ship-generated waves and on the return flows.Thus,a map of sediment distribution and the modes of sediment transport generated by the passage of the ship are presented.  相似文献   
37.
The paper presents the effects of blade twist and nacelle shape on the performance of horizontal axis tidal current turbines using both analytical and numerical methods. Firstly, in the hydrodynamic design procedure, the optimal profiles of untwisted and twisted blades and their predicted theoretical turbine performance are obtained using the genetic algorithm method. Although both blade profiles produce desired rated rotational speed, the twisted blade achieves higher power and thrust performance. Secondly, numerical simulation is performed using sliding mesh technique to mimic rotating turbine in ANSYS FLUENT to validate the analytical results. The Reynolds-Averaged Navier-Stokes (RANS) approximation of the turbulence parameters is applied to obtain the flow field around the turbine. It is found that power and axial thrust force from BEMT (Blade Element Momentum Theory) method are under-predicted by 2% and 8% respectively, compared with numerical results. Afterwards, the downstream wake field of the turbine is investigated with two different nacelle shapes. It is found that the rotor performance is not significantly affected by the different nacelle shapes. However, the structural turbulence caused by the conventional nacelle is stronger than that by the NACA-profiled shape, and the former can cause detrimental effect on the performance of the downstream turbines in tidal farms.  相似文献   
38.
以内陆某核电厂为例,简述了利用流体力学软件STAR-CCM+模拟内陆核电厂厂区流场及大型自然通风冷却塔雾羽扩散的实现原理,介绍如何将SolidWorks2010建立的核电厂厂区模型导入到STAR-CCM+,给出了STAR-CCM+划分网格的过程,说明了边界层划分的基本假定条件和参数。将STAR-CCM+模拟的数据与风洞实验数据进行了比较,结果显示了较好的一致性。结果表明:在离地面5m的高度处,大型自然通风冷却塔背风面形成较大的空腔区,空腔区风速较小,只有1-1.5 m/s,部分区域达到静风;在冷却塔两侧风速相比入口速度增大了1.66倍;在离开地面100 m的高空,冷却塔背风面的空腔区依然比较明显,冷却塔两侧风速相比入口风速,其变化趋于平稳;在沿主导风向的轴线上,冷却塔两侧风的扰动依次加强;单台冷却塔雾羽最大的抬升高度出现在下风向距离3300 m处,最大抬升高度为690 m,4台冷却塔雾羽在下风向距离3300 m的抬升高度约为850 m,是单台冷却塔的1.23倍。  相似文献   
39.
对具有复杂下垫面的小区精细化风环境进行数值模拟是当前城市气象研究的热点,而针对具有复杂地形的山地型城市(如重庆)的研究还比较匮乏。本文采用能显式分辨下垫面陡峭地形和复杂建筑物的计算流体力学(CFD)模式对重庆市渝北区龙湖社区气候态下的精细化风环境进行高分辨率的数值模拟。结果表明,下垫面能显著调节小区内风场的分布,风速大值区主要出现在九龙湖等开阔区域以及与中尺度背景入流方向一致的街道中。在夏季,小区整体风场以东南风为主,而其他3个季节则以偏东风为主。4个季节中,夏季小区内的风速最大,平均风速为0.3 m/s左右,局地能出现大于背景风的风速,可达0.8 m/s;其他3个季节的风速则较弱,区域平均的风速在0.2 m/s左右。不同的建筑物布局对局地风环境的影响也不同:单个孤立高层建筑迎风面的近地面存在明显地绕流,局地风速有所增加,而在背风面则形成尾流区,水平风速较低;在低矮分散的建筑群,建筑物的整体高度不高,区域内流场相对来说比较一致,风速较大,有利于小区的通风;在密集高层建筑群内,由于建筑物群本身的布局比较封闭,加之不同建筑物的环流场存在相互干扰及影响,使得小区近地面风速几乎为零,不利于小区通风和污染物扩散。建筑物的这些影响在城市冠层内尤为明显,高度越高这种影响越弱。  相似文献   
40.
Results from a series of numerical simulations of two‐dimensional open‐channel flow, conducted using the computational fluid dynamics (CFD) code FLUENT, are compared with data quantifying the mean and turbulent characteristics of open‐channel flow over two contrasting gravel beds. Boundary roughness effects are represented using both the conventional wall function approach and a random elevation model that simulates the effects of supra‐grid‐scale roughness elements (e.g. particle clusters and small bedforms). Results obtained using the random elevation model are characterized by a peak in turbulent kinetic energy located well above the bed (typically at y/h = 0·1–0·3). This is consistent with the field data and in contrast to the results obtained using the wall function approach for which maximum turbulent kinetic energy levels occur at the bed. Use of the random elevation model to represent supra‐grid‐scale roughness also allows a reduction in the height of the near‐bed mesh cell and therefore offers some potential to overcome problems experienced by the wall function approach in flows characterized by high relative roughness. Despite these benefits, the results of simulations conducted using the random elevation model are sensitive to the horizontal and vertical mesh resolution. Increasing the horizontal mesh resolution results in an increase in the near‐bed velocity gradient and turbulent kinetic energy, effectively roughening the bed. Varying the vertical resolution of the mesh has little effect on simulated mean velocity profiles, but results in substantial changes to the shape of the turbulent kinetic energy profile. These findings have significant implications for the application of CFD within natural gravel‐bed channels, particularly with regard to issues of topographic data collection, roughness parameterization and the derivation of mesh‐independent solutions. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号