首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2398篇
  免费   310篇
  国内免费   302篇
测绘学   97篇
大气科学   23篇
地球物理   805篇
地质学   1113篇
海洋学   252篇
天文学   5篇
综合类   303篇
自然地理   412篇
  2024年   5篇
  2023年   20篇
  2022年   44篇
  2021年   54篇
  2020年   60篇
  2019年   66篇
  2018年   61篇
  2017年   71篇
  2016年   60篇
  2015年   61篇
  2014年   86篇
  2013年   141篇
  2012年   87篇
  2011年   86篇
  2010年   79篇
  2009年   100篇
  2008年   113篇
  2007年   155篇
  2006年   148篇
  2005年   134篇
  2004年   146篇
  2003年   148篇
  2002年   99篇
  2001年   115篇
  2000年   109篇
  1999年   77篇
  1998年   92篇
  1997年   91篇
  1996年   95篇
  1995年   81篇
  1994年   68篇
  1993年   60篇
  1992年   46篇
  1991年   30篇
  1990年   17篇
  1989年   14篇
  1988年   24篇
  1987年   16篇
  1986年   22篇
  1985年   4篇
  1984年   3篇
  1983年   4篇
  1982年   2篇
  1981年   1篇
  1980年   1篇
  1979年   4篇
  1978年   4篇
  1977年   2篇
  1954年   4篇
排序方式: 共有3010条查询结果,搜索用时 125 毫秒
971.
972.
973.
974.
975.
976.
977.
华北克拉通中部大陆地壳断面磁性结构研究及意义   总被引:3,自引:1,他引:2       下载免费PDF全文
为探讨华北克拉通中部地壳的磁性结构与深部地质过程之间的相互关系,测量了五台-集宁地壳剖面44件岩石样品的磁性参量及磁滞回线.结合岩石学、地球化学及磁卫星资料的综合研究结果表明,整个断面具有明显的磁性分带结构特征.上地壳、中地壳与下地壳上部岩石饱和磁化强度(Js)的平均值分别为58.7A/m、681.2A/m与1068.0A/m,而饱和等温剩磁JSIRM为4.1A/m、77.9A/m和138.4A/m.磁性与变质相及成分对应分析显示,断面内的磁性结构主要受变质作用控制(尤其是变酸性岩与变基性岩).Js值的变异系数Vc,上地壳为62.2%、中地壳为62.5%、下地壳为143.7%,而JSIRM值的变异系数则分别为707%、86.1%、165.4%.中一下地壳之间Vc值的差异远大于上一中地壳,显示了地壳深部磁性强度的非均一分布特征.本区中一下地壳岩石的磁化强度明显高于秦岭造山带北缘的登封群与太华群,这一差异可能与两区地壳深部热结构的明显差异相关.结合磁卫星长波长磁异常分析推测,地壳断面中基性麻粒岩的磁性代表了区域下地壳的磁化强度,如果地壳深部的剩余磁性以热粘滞剩磁(TVRT)为主,则可估算出...  相似文献   
978.
Geothermal aspects of the hypothesis, relating the earthquake swarms in the West Bohemia/Vogtland seismoactive region to magmatic activity, are addressed. A simple 1-D geothermal model of the crust was used to assess the upper limit of the subsurface heating caused by magma intrusion at the assumed focal depth of 9 km. We simulated the process by solving the transient heat conduction equation numerically, considering the heat of magma crystallization to be gradually released in the temperature interval 1100°C to 900°C. The temperature field prior to the intrusion was in steady-state with a surface temperature of 10°C and heat flow of 80 mWm –2 , the temperature at the 9 km depth was 270°C. The results suggest that the temperature and heat flow in the uppermost 1 km of the crust begin to grow 100 ka after the intrusion emplacement only, and that the amplitudes of the changes for the realistic lateral extent (a few kilometres) of the intrusion are very small. It was also found that the rate of magma solidification depends strongly on the thickness of the intrusion. It takes about 100 years for a 50 m thick sill to cool down from 1100°C to 600°C, which value represents the lower limit of the solidus temperature. The same cooling takes only 60 days if the sill is 2 m thick. If the nature of the strongly reflected boundaries, interpreted from the January 1997 Nový Kostel seismograms, is connected with the fresh emplacement of magma, the calculated cooling rates have a predictive potential for the temporal changes of the waveforms.  相似文献   
979.
A joint element is proposed, which can simulate the three phases of behaviour of an impermeable layer over a liquefied sand layer. The analysis tracks the post-liquefaction reconsolidation of the sand, the simultaneous development of a water film between the layers and the settlements resulting from the subsequent drainage of the water film. The element is incorporated in a finite element program, which can be used to simulate the behaviour of layered systems. The effectiveness of the program is demonstrated by simulation of the performance of a model soil deposit of two layers in a centrifuge test.  相似文献   
980.
Using 3·5 kHz high-resolution seismic data, gravity cores and side-scan sonar imagery, the flow behaviour of submarine, glacigenic debris flows on the Bear Island Trough Mouth Fan, western Barents Sea was studied. During their downslope movement, the sediments within the uppermost part of the debris flows (<3 m) are inferred to have been deformed as a result of the shear stress at the debris–water interface. Thus, the uppermost part of the flow did not move downslope as a rigid plug. If present, a rigid part of the flow was located at least some metres below the surface. At c . 1000 to at least 1600 m water depth, the debris flows eroded and probably incorporated substrate debris. Further downslope, the debris flows moved passively over substrate sediments. The hypothesis of hydroplaning of the debris flow front may explain why the debris flows moved across the lower fan without affecting the underlying sediments. Detailed morphological information from the surface of one of the debris flow deposits reveals arcuate ridges. These features were probably formed by flow surge. Hydroplaning of the debris flow front may also explain the formation of flow surge. The long runout distance of some of the large debris flows could be due to accretion of material to the base of the debris flow, thereby increasing in volume during flow, and/or to hydroplaning suppressing deceleration of the flow.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号