首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   455篇
  免费   55篇
  国内免费   141篇
地球物理   52篇
地质学   574篇
海洋学   12篇
综合类   8篇
自然地理   5篇
  2024年   2篇
  2023年   6篇
  2022年   8篇
  2021年   7篇
  2020年   13篇
  2019年   14篇
  2018年   14篇
  2017年   11篇
  2016年   7篇
  2015年   7篇
  2014年   16篇
  2013年   22篇
  2012年   14篇
  2011年   18篇
  2010年   22篇
  2009年   22篇
  2008年   16篇
  2007年   41篇
  2006年   34篇
  2005年   27篇
  2004年   35篇
  2003年   42篇
  2002年   26篇
  2001年   37篇
  2000年   31篇
  1999年   27篇
  1998年   25篇
  1997年   26篇
  1996年   14篇
  1995年   22篇
  1994年   13篇
  1993年   7篇
  1992年   9篇
  1991年   8篇
  1990年   2篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1984年   1篇
  1983年   2篇
排序方式: 共有651条查询结果,搜索用时 15 毫秒
101.
张聪  田作林  张立飞  黄杰  陈梅 《地质通报》2013,32(12):2044-2054
榴辉岩作为俯冲带中重要的岩石类型保存有丰富的地球动力学信息。对榴辉岩及其退变质岩石的研究有助于建立俯冲带演化的p-T轨迹,了解俯冲岩石在折返过程中温压条件及矿物相的变化,从而对俯冲带折返的动力学机制进行限定。对柴北缘锡铁山双矿物榴辉岩及含多硅白云母榴辉岩进行了详细的岩石学研究。在NC(K)FMASH体系中对两类榴辉岩进行变质相平衡模拟,得到双矿物榴辉岩的峰期温压条件为745~790℃,大于2.8~3.0GPa(M1),后经历等温降压过程达到角闪石榴辉岩岩相(670~770℃,1.6~2.2GPa,M2),与含多硅白云母榴辉岩经历了相同的折返过程。锡铁山双矿物榴辉岩的原岩具有N-MORB的地球化学特征,而含多硅白云母榴辉岩则显示E-MORB或者OIB特征,二者原岩成分存在明显差异。两类榴辉岩的p-T演化过程和地球化学特征表明,锡铁山双矿物榴辉岩与含多硅白云母榴辉岩矿物学特征的差异是其原岩的多源性造成的,而与俯冲后折返过程中的退变质作用无必然联系。  相似文献   
102.
103.
简平  杨巍然 《地质学报》2000,74(3):259-264
熊店榴辉岩产于大别山西部苏家河构造混杂岩带内,是典型的高压一超高压中温榴辉岩。作者应用岩学结合阴极发光和扫描电镜方法,较系统地研究了榴辉岩中锆石在岩石中的赋存状态、内部结构及表面特征。锆石主要产于石榴子石等变质矿物内,与主晶界面清晰,具有多晶面等变质锆石特有形貌特征,内部均或发育变质生长结构,从而说明它们是变质作用的产物。SHRIMP分析表明,锆石^206Pb/^238U年龄为335~424Ma,  相似文献   
104.
Garnet‐bearing peridotite lenses are minor but significant components of most metamorphic terranes characterized by high‐temperature eclogite facies assemblages. Most peridotite intrudes when slabs of continental crust are subducted deeply (60–120 km) into the mantle, usually by following oceanic lithosphere down an established subduction zone. Peridotite is transferred from the resulting mantle wedge into the crustal footwall through brittle and/or ductile mechanisms. These ‘mantle’ peridotites vary petrographically, chemically, isotopically, chronologically and thermobarometrically from orogen to orogen, within orogens and even within individual terranes. The variations reflect: (1) derivation from different mantle sources (oceanic or continental lithosphere, asthenosphere); (2) perturbations while the mantle wedges were above subducting oceanic lithosphere; and (3) changes within the host crustal slabs during intrusion, subduction and exhumation. Peridotite caught within mantle wedges above oceanic subduction zones will tend to recrystallize and be contaminated by fluids derived from the subducting oceanic crust. These ‘subduction zone peridotites’ intrude during the subsequent subduction of continental crust. Low‐pressure protoliths introduced at shallow (serpentinite, plagioclase peridotite) and intermediate (spinel peridotite) mantle depths (20–50 km) may be carried to deeper levels within the host slab and undergo high‐pressure metamorphism along with the enclosing rocks. If subducted deeply enough, the peridotites will develop garnet‐bearing assemblages that are isofacial with, and give the same recrystallization ages as, the eclogite facies country rocks. Peridotites introduced at deeper levels (50–120 km) may already contain garnet when they intrude and will not necessarily be isofacial or isochronous with the enclosing crustal rocks. Some garnet peridotites recrystallize from spinel peridotite precursors at very high temperatures (c. 1200 °C) and may derive ultimately from the asthenosphere. Other peridotites are from old (>1 Ga), cold (c. 850 °C), subcontinental mantle (‘relict peridotites’) and seem to require the development of major intra‐cratonic faults to effect their intrusion.  相似文献   
105.
Known eclogite occurrences in the Sanbagawa metamorphic belt of SW Japan are dominantly in metagabbro bodies which have complex polyphase metamorphic histories. These bodies are generally described as tectonic blocks and their relationship to the Sanbagawa metamorphism is unclear. New findings of foliated eclogite in the Seba and Kotsu areas show that eclogite facies metamorphism is much more widespread than generally thought. Evidence that the foliated eclogite units originated as lavas or sediments implies that these units can be treated as a high-grade part of the subduction-related Sanbagawa metamorphism. Although separated by an along-strike distance of 80 km, the Seba and Kotsu eclogites have very similar garnet and omphacite compositions, suggesting that they were formed under similar metamorphic conditions. However, differences in the associated retrograde assemblages (epidote–amphibolite in the Seba unit and epidote–blueschist in the Kotsu unit) suggest contrasting P – T  paths. In both units, the eclogite rocks occupy the highest structural level of the Sanbagawa belt and overlie rocks metamorphosed at lower pressure. The lower boundary to the eclogite units is therefore a major tectonic discontinuity locally decorated with lenses of exotic material. These features can help trace the boundary into other areas. The previously known outcrops of eclogite show enough similarities with the newly found areas to suggest that all the eclogite facies rocks in the Sanbagawa belt constitute a single nappe that lies at the highest structural levels of the orogen.  相似文献   
106.
Abstract High‐ to ultrahigh‐pressure metamorphic (HP–UHPM) rocks crop out over 150 km along an east–west axis in the Kokchetav Massif of northern Kazakhstan. They are disposed within the Massif as a 2 km thick, subhorizontal pile of sheet‐like nappes, predominantly composed of interlayered pelitic and psammitic schists and gneisses, amphibolite and orthogneiss, with discontinuous boudins and lenses of eclogite, dolomitic marble, whiteschist and garnet pyroxenite. On the basis of predominating lithologies, we subdivided the nappe group into four north‐dipping, fault‐bounded orogen‐parallel units (I–IV, from base to top). Constituent metabasic rocks exhibit a systematic progression of metamorphic grades, from high‐pressure amphibolite through quartz–eclogite and coesite–eclogite to diamond–eclogite facies. Coesite, diamond and other mineral inclusions within zircon offer the best means by which to clarify the regional extent of UHPM, as they are effectively sequestered from the effects of fluids during retrogression. Inclusion distribution and conventional geothermobarometric determinations demonstrate that the highest grade metamorphic rocks (Unit II: T = 780–1000°C, P = 37–60 kbar) are restricted to a medial position within the nappe group, and metamorphic grade decreases towards both the top (Unit III: T = 730–750°C, P = 11–14 kbar; Unit IV: T = 530°C, P = 7.5–9 kbar) and bottom (Unit I: T = 570–680°C; P = 7–13.5 kbar). Metamorphic zonal boundaries and internal structural fabrics are subhorizontal, and the latter exhibit opposing senses of shear at the bottom (top‐to‐the‐north) and top (top‐to‐the‐south) of the pile. The orogen‐scale architecture of the massif is sandwich‐like, with the HP–UHPM nappe group juxtaposed across large‐scale subhorizontal faults, against underlying low P–T metapelites (Daulet Suite) at the base, and overlying feebly metamorphosed clastic and carbonate rocks (Unit V). The available structural and petrologic data strongly suggest that the HP–UHPM rocks were extruded as a sequence of thin sheets, from a root zone in the south toward the foreland in the north, and juxtaposed into the adjacent lower‐grade units at shallow crustal levels of around 10 km. The nappe pile suffered considerable differential internal displacements, as the 2 km thick sequence contains rocks exhumed from depths of up to 200 km in the core, and around 30–40 km at the margins. Consequently, wedge extrusion, perhaps triggered by slab‐breakoff, is the most likely tectonic mechanism to exhume the Kokchetav HP–UHPM rocks.  相似文献   
107.
Abstract To investigate the regional thermobaric structure of the diamondiferous Kokchetav ultrahigh‐pressure and high‐pressure (UHP–HP) massif and adjacent units, eclogite and other metabasites in the Kulet and Saldat–Kol regions, northern Kazakhstan, were examined. The UHP–HP massif is subdivided into four units, bounded by subhorizontal faults. Unit I is situated at the lowest level of the massif and consists of garnet–amphibolite and acidic gneiss with minor pelitic schist and orthogneiss. Unit II, which structurally overlies Unit I, is composed mainly of pelitic schist and gneiss, and whiteschist locally with abundant eclogite blocks. The primary minerals observed in Kulet and Saldat–Kol eclogites are omphacite, sodic augite, garnet, quartz, rutile and minor barroisite, hornblende, zoisite, clinozoisite and phengite. Rare kyanite occurs as inclusions in garnet. Coesite inclusions occur in garnet porphyroblasts in whiteschist from Kulet, which are closely associated with eclogite masses. Unit III consists of alternating orthogneiss and amphibolite with local eclogite masses. The structurally highest unit, Unit IV, is composed of quartzitic schist with minor pelitic, calcareous, and basic schist intercalations. Mineral assemblages and compositions, and occurrences of polymorphs of SiO2 (quartz or coesite) in metabasites and associated rocks in the Kulet and Saldat–Kol regions indicate that the metamorphic grades correspond to epidote–amphibolite, through high‐pressure amphibolite and quartz–eclogite, to coesite–eclogite facies conditions. Based on estimations by several geothermobarometers, eclogite from Unit II yielded the highest peak pressure and temperature conditions in the UHP–HP massif, with metamorphic pressure and temperature decreasing towards the upper and lower structural units. The observed thermobaric structure is subhorizontal. The UHP–HP massif is overlain by a weakly metamorphosed unit to the north and is underlain by the low‐pressure Daulet Suite to the south; boundaries are subhorizontal faults. There is a distinct pressure gap across these boundaries. These suggest that the highest grade unit, Unit II, has been selectively extruded from the greatest depths within the UHP–HP unit during the exhumation process, and that all of the UHP–HP unit has been tectonically intruded and juxtaposed into the adjacent lower grade units at shallower depths of about 10 km.  相似文献   
108.
NORTH QAIDAM ULTRAHIGH PRESSURE METAMORPHIC (UHPM) BELT ON THE NORTHEASTERN QINGHAI-TIBET PLATEAU AND ITS EASTWARD EXTENSION1 YangJS ,XuZQ ,LiHB ,etal.DiscoveryofeclogiteatnorthernmarginofQaidambasin ,NWChina[J] .ChineseScienceBulletin,1998,4 3:1755~ 176 0 . 2 ZhangJX ,ZhangZM ,XuZQ ,etal.TheagesofU PbandSm NdforeclogitefromthewesternsegmentofAltynTaghtectonicbelt—theevidencesforexistenceofCaledonianorogenicroot[J] .ChineseScienc…  相似文献   
109.
吴亚东  杨进辉  朱昱升 《岩石学报》2023,39(9):2583-2597

本文对中国东部中新世四子王旗玄武岩开展了详细的全岩和橄榄石主、微量元素及全岩Sr-Nd-Pb-Hf-Mg同位素研究, 据此探讨它们的成因及源区性质。研究发现, 四子王旗玄武岩具有类似于高μ(HIMU)型地幔起源熔体的微量元素分布特征, Zr、Hf、Ti的负异常, 高的Zr/Hf比值(Zr/Hf=49.3~54.8), 以及低于正常地幔范围的δ26Mg值(-0.51‰~-0.49‰), 表明其来源于碳酸盐化地幔源区。它们还具有低的Sc含量(10.1×10-6~10.5×10-6)和高的Gd/Yb比值(8.7~9.4), 结合它们橄榄石斑晶低的Fo值, 高的NiO含量和Fe/Mn比值, 揭示其母岩浆为碳酸盐化榴辉岩部分熔融产生。四子王旗玄武岩具有亏损的Sr-Nd-Hf同位素(87Sr/86Sr=0.70370~0.70449;εNd=+6.3~+6.4;εHf=+9.7~+10.3), 以及较低的Pb同位素组成(206Pb/204Pb=17.94, 207Pb/204Pb=15.44, 208Pb/204Pb=37.89), 指示它们源区为年轻的再循环洋壳物质, 很有可能来自于滞留的西太平洋板片。四子王旗玄武岩位于南北重力梯度带以西并远离海沟, 意味着滞留的西太平洋板片在物质上对上覆地幔的影响范围较之前认识的要更广。

  相似文献   
110.
Eclogite thermobarometry is crucial for constraining the depths and temperatures to which oceanic and continental crust subduct. However, obtaining the pressure and temperature (P–T) conditions of eclogites is complex as they commonly display high-variance mineral assemblages, and the mineral compositions only vary slightly with P–T. In this contribution, we present a comparison between two independent and commonly used thermobarometric approaches for eclogites: conventional thermobarometry and forward phase-equilibrium modelling. We assess how consistent the thermobarometric calculations are using the garnet–clinopyroxene–phengite barometer and garnet–clinopyroxene thermometer with predictions from forward modelling (i.e. comparing the relative differences between approaches). Our results show that the overall mismatch in methods is typically ±0.2–0.3 GPa and ±29–42°C although differences as large as 80°C and 0.7 GPa are possible for a few narrow ranges of P–T conditions in the forward models. Such mismatch is interpreted as the relative differences among methods, and not as absolute uncertainties or accuracies for either method. For most of the investigated P–T conditions, the relatively minor differences between methods means that the choice in thermobarometric method itself is less important for geological interpretation than careful sample characterization and petrographic interpretation for deriving P–T from eclogites. Although thermobarometry is known to be sensitive to the assumed XFe3+ of a rock (or mineral), the relative differences between methods are not particularly sensitive to the choice of bulk-rock XFe3+, except at high temperatures (>650°C, amphibole absent) and for very large differences in assumed XFe3+ (0–0.5). We find that the most important difference between approaches is the activity–composition (a–x) relations, as opposed to the end-member thermodynamic data or other aspects of experimental calibration. When equivalent a–x relations are used in the conventional barometer, P calculations are nearly identical to phase-equilibrium models (ΔP < 0.1). To further assess the implications of these results for real rocks, we also evaluate common mathematical optimizations of reaction constants used for obtaining the maximum P–T with conventional thermobarometric approaches (e.g. using the highest aGrs2 × aPrp in garnet and Si content in phengite, and the lowest aDi in clinopyroxene). These approaches should be used with caution, because they may not represent the compositions of equilibrium mineral assemblages at eclogite facies conditions and therefore systematically bias P–T calculations. Assuming method accuracy, geological meaningful Pmax at a typical eclogite facies temperature of ~660°C will be obtained by using the greatest aDi, aCel, and aPrp and lowest aGrs and aMs; garnet and clinopyroxene with the lowest Fe2+/Mg ratios may yield geological meaningful Tmax at a typical eclogite facies pressure of 2.5 GPa.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号