首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   458篇
  免费   29篇
  国内免费   100篇
大气科学   1篇
地球物理   171篇
地质学   358篇
海洋学   28篇
天文学   2篇
综合类   3篇
自然地理   24篇
  2024年   2篇
  2023年   4篇
  2022年   6篇
  2021年   8篇
  2020年   9篇
  2019年   6篇
  2018年   14篇
  2017年   15篇
  2016年   14篇
  2015年   7篇
  2014年   15篇
  2013年   37篇
  2012年   24篇
  2011年   10篇
  2010年   8篇
  2009年   31篇
  2008年   49篇
  2007年   28篇
  2006年   34篇
  2005年   27篇
  2004年   33篇
  2003年   22篇
  2002年   23篇
  2001年   13篇
  2000年   22篇
  1999年   20篇
  1998年   19篇
  1997年   14篇
  1996年   17篇
  1995年   9篇
  1994年   14篇
  1993年   8篇
  1992年   4篇
  1991年   4篇
  1990年   3篇
  1989年   4篇
  1988年   3篇
  1987年   4篇
  1986年   1篇
  1985年   1篇
  1978年   1篇
排序方式: 共有587条查询结果,搜索用时 812 毫秒
41.
The Carnian Pluvial Episode (CPE) fingerprints global environmental perturbations and biological extinction on land and oceans and is potentially linked to the Wrangellia Large Igneous Province (LIP). However, the correlation between terrestrial environmental changes and Wrangellia volcanism in the Ordos Basin during the CPE remains poorly understood. Records of negative carbon isotopic excursions (NCIEs), mercury (Hg), Hg/TOC, and Hg enrichment factor (HgEF) from oil shales in a large-scale terrestrial Ordos Basin in the Eastern Tethys were correlated with marine and other terrestrial successions. The three significant NCIEs in the study section were consistently correlated with those in the CPE successions of Europe, the UK, and South and North China. The U-Pb geochronology indicates a Ladinian–Carnian age for the Chang 7 Member. A comprehensive overview of the geochronology, NCIE correlation, and previous bio- and chronostratigraphic frameworks shows that the Ladinian–Carnian boundary is located in the lower part of Chang 7 in the Yishicun section. HgEF may be a more reliable proxy for tracing volcanic eruptions than the Hg/TOC ratio because the accumulation rates of TOC content largely vary in terrestrial and marine successions. The records of Hg, Hg/TOC, HgEF, and NCIEs in the Ordos Basin aligned with Carnian successions worldwide and were marked by similar anomalies, indicating a global response to the Wrangellia LIP during the CPE. Anoxia, a warm-humid climate, enhancement of detrital input, and NCIEs are synchronous with the CPE interval in the Ordos Basin, which suggests that the CPE combined with the regional Qinling Orogeny should dominate the enhanced rate of terrigenous input and paleoenvironmental evolution in the Ordos Basin.  相似文献   
42.
43.
Field investigations, K-Ar age determinations and chemical data were used to describe the development of an intraplate volcanic province, the Darfur Dome, Sudan. Magmatism started 36 Ma ago at a small subvolcanic complex (Jebel Kussa) in the center of the dome and was active in the same area between 26 and 23 Ma. Two major volcanic fields (Marra Mountains and Tagabo Hills) developed between 16 and 10 Ma. Volcanism started again at 6.8 Ma with a third volcanic field (Meidob Hills) and at 4.3 Ma in the Marra Mountains and with the reactivation of the center. Activity then continued until the late Quaternary. Having started in the center of the Darfur Dome, volcanism moved in 36 Ma 200 km towards the NNE and 100 km SSW No essential difference in the alkaline magma types (basanitic to phonolitic-trachytic, with different amounts of assimilation of crustal material) in the different fields, was observed. Magmatism is thought to have been produced by a rising mantle plume and volcanism was triggered by stress resolution along the Central African Fault Zone.  相似文献   
44.
Detailed mapping of Tok Island, located in the middle of the East Sea (Sea of Japan), along with lithofacies analysis and K-Ar age determinations reveal that the island is of early to late Pliocene age and comprises eight rock units: Trachyte I, Unit P-I, Unit P-II, Trachyandesite (2.7±0.1 Ma), Unit P-III, Trachyte II (2.7±0.1 Ma), Trachyte III (2.5±0.1 Ma) and dikes in ascending stratigraphic order. Trachyte I is a mixture of coherent trachytic lavas and breccias that are interpreted to be subaqueous lavas and related hyaloclastites. Unit P-I comprises massive and inversely graded basaltic breccias which resulted from subaerial gain flows and subaqueous debris flows. A basalt clast from the unit, derived from below Trachyte I, has an age of 4.6±0.4 Ma. Unit P-II is composed of graded and stratified lapilli tuffs with the characteristics of proximal pyroclastic surge deposits. The Trachyandesite is a massive subaerial lava ponded in a volcano-tectonic depression, probably a summit crater. A pyroclastic sequence containing flattened scoria clasts (Unit P-III) and a small volume subaerial lava (Trachyte II) occur above the Trachyandesite, suggesting resumption of pyroclastic activity and lava effusion. Afterwards, shallow intrusion of magma occurred, producing Trachyte III and trachyte dikes.The eight rock units provide an example of the changing eruptive and depositional processes and resultant succession of lithofacies as a seamount builds up above sea level to form an island volcano: Trachyte I represents a wholly subaqueous and effusive stage; Units P-I and P-II represent Surtseyan and Taalian eruptive phases during an explosive transitional (subaqueous to emergent) stage; and the other rock units represent later subaerial effusive and explosive stages. Reconstruction of volcano morphology suggests that the island is a remnant of the south-western crater rim of a volcano the vent of which lies several hundred meters to the north-east.  相似文献   
45.
Shallow-water limestones of presumed Late Cretaceous and Eocene age, interbedded with basaltic lavas, were described by earlier authors from São Nicolau in the northwestern part of the Cabo Verde archipelago. If confirmed, these ages would imply late Mesozoic shallow-marine and subaerial volcanic activity in the Cabo Verde archipelago, and document a geological history very different from that known so far from other Cabo Verde Islands, from which no subaerial volcanic activity before the mid-Cenozoic is known. Our re-investigation of the foraminiferal fauna indicates a Late Miocene age for the presumed Late Cretaceous and Eocene limestones. The hypothesis of a long-lived hot spot, active by the Early Cretaceous, and of a major island-building stage in the Cabo Verde Islands during this period, is therefore not supported by the present bio- or chronostratigraphic data.  相似文献   
46.
Three-dimensional seismic data from the Faeroe-Shetland Basin provides detailed information on the relationships between sills, dykes, laccoliths and contemporaneous volcanic activity. The data shows that sills are predominantly concave upwards, being complete or partial versions of radially or bilaterally symmetrical forms that possess flat inner saucers connected to a flat outer rim by a steeply inclined sheet. Such morphologies are only partially modified by pre-existing faults. Sills can be sourced from dykes or the steep climbing portions of deeper sills. Both sills and dykes can provide magma to overlying volcanic fissures and sills can be shown to feed shallow laccoliths. Magma flow patterns, as revealed by opacity rendering, suggest that sills propagate upwards and outwards away from the magma feeder. As an individual sill can consist of several leaves emplaced at different stratigraphic levels, and as a sill or dyke can provide magma to volcanic fissures, other sills and laccoliths, the data suggests that neutral buoyancy concepts may not provide a complete explanation for the mechanism and level of sill emplacement. Instead, the data suggests that the presence of lithological contrasts, particularly ductile horizons such as overpressured shales may permit sill formation at any level below the neutrally buoyant level. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. Ken Thomson–deceased, April 2007  相似文献   
47.
The late Pleistocene San Venanzo maar and nearby Pian di Celle tuff ring in the San Venanzo area of Umbria, central Italy, appear to represent different aspects of an eruptive cycle accompanied by diatreme formation. Approximately 6x106 m3 of mostly lapillisized, juvenile ejecta with lesser amounts of lithics and 1x106 m3 of lava were erupted. The stratigraphy indicates intense explosive activity followed by lava flows and subvolcanic intrusions. The pyroclastic material includes lithic breccia derived from vent and diatreme wall erosion, roughly stratified lapilli tuff deposited by concentrated pyroclastic surge, chaotic scoriaceous pyroclastic flow and inverse graded grain-flow deposits. The key feature of the pyroclastics is the presence of concentric-shelled lapilli generated by accretion around the lithics during magma ascent in the diatreme conduits. The rock types range from kalsilite leucite olivine melilitite lavas and subvolcanic intrusions to carbonatite, phonolite and calcitic melilitite pyroclasts. Juvenile ejecta contain essential calcite whose composition and texture indicate a magmatic origin. Pyroclastic carbonatite activity is also indicated by the presence of carbonatite ash beds. The San Venanzo maar-forming event is believed to have been trigered by fluid-rich carbonatite-phonolite magma. The eruptive centre the moved to the Pian di Celle tuff ring, where the eruption of degassed olivine melilititic magma and late intrusions ended magmatic activity in the area. In both volcanoes the absence of phreatomagmatic features together with the presence of large amounts of primary calcite suggests carbonatite segregation and violent exsolution of CO2 which, flowing through the diatremes, produced the peculiar intrusive pyroclastic facies and triggered explosions.  相似文献   
48.
The 14 ka Puketarata eruption of Maroa caldera in Taupo Volcanic Zone was a dome-related event in which the bulk of the 0.25 km3 of eruption products were emplaced as phreatomagmatic fall and surge deposits. A rhyolitic dike encountered shallow groundwater during emplacement along a NE-trending normal fault, leading to shallow-seated explosions characterised by low to moderate water/magma ratios. The eruption products consist of two lava domes, a proximal tuff ring, three phreatic collapse craters, and a widespread fall deposit. The pyroclastic deposits contain dominantly dense juvenile clasts and few foreign lithics, and relate to very shallow-level disruption of the growing dome and its feeder dike with relatively little involvement of country rock. The distal fall deposit, representing 88% of the eruption products is, despite its uniform appearance and apparently subplinian dispersal, a composite feature equivalent to numerous discrete proximal phreatomagmatic lapilli fall layers, each deposited from a short-lived eruption column. The Puketarata products are subdivided into four units related to successive phases of:(A) shallow lava intrusion and initial dome growth; (B) rapid growth and destruction of dome lobes; (C) slower, sustained dome growth and restriction of explosive disruption to the dome margins; and (D) post-dome withdrawal of magma and crater-collapse. Phase D was phreatic, phases A and C had moderate water: magma ratios, and phase B a low water: magma ratio. Dome extrusion was most rapid during phase B, but so was destruction, and hence dome growth was largely accomplished during phase C. The Puketarata eruption illustrates how vent geometry and the presence of groundwater may control the style of silicic volcanism. Early activity was dominated by these external influences and sustained dome growth only followed after effective exclusion of external water from newly emplaced magma.  相似文献   
49.
The caldera of Pululagua is an eruptive centre of the Northern Volcanic Zone of the South American volcanic arc, located about 15 km north of Quito, Ecuador. Activity leading to formation of the caldera occurred about 2450 b.p. as a series of volcanic episodes during which an estimated 5–6 km3 (DRE) of hornblende-bearing dacitic magma was erupted. A basal pumice-fall deposit covers more than 2.2x104 km2 with a volume of about 1.1 km3 and represents the principal and best-preserved plinian layer. Circular patterns of isopachs and pumice, lithic and Md isopleths of the Basal Fallout (BF) around the caldera indicate emplacement in wind-free conditions. Absence of wind is confirmed by an ubiquitous, normally graded, thin ash bed at the top of the lapilli layer which originated from slow settling of fines after cessation of the plinian column (co-plinian ash). The unusual atmospheric conditions during deposition make the BF deposit particularly suitable for the application and evaluation of pyroclast dispersal models. Application of the Carey and Sparks' (1986) model shows that whereas the 3.2-, 1.6-, and 0.8-cm lithic isopleths predict a model column height of about 36 km, the 6.4-cm isopleth yields and estimate of only 21 km. The 4.9- and 6.4-cm isopleths yield a column height of 28 km using the model of Wilson and Walker (1987). The two models give the same mass discharge rate of 2x108 kg s-1. A simple exponential decrease of thickness with distance, as proposed by Pyle (1989) for plinian falls, fits well with the BF. Exponential decrease of size with distance is followed by clasts less than about 3 cm, suggesting, in agreement with Wilson and Walker (1987), that only a small proportion of large clasts reach the top of the column. Variations with distance in clast distribution patterns imply that, in order to obtain column heights by clast dispersal models, the distribution should be known from both proximal and distal zones. Knowledge of only a few isopleths, irrespective of their distance from the vent, is not sufficient as seemed justified by the method of Pyle (1989).  相似文献   
50.
Detailed facies analysis of hyaloclastites and associated lavas from eight table mountains and similar "hyaloclastite volcanoes" in the Icelandic rift zone contradict a rapid and continuous, "monogenetic", entirely subglacial evolution of most volcanoes studied. The majority of the exposed hyaloclastite deposits formed in large, stable lakes as indicated by widespread, up to 300-m-thick, continuous sections of deep water, shallow water and emergent facies. Salient features include extensively layered or bedded successions comprising mainly debris flow deposits, turbidites, base surge and fallout deposits consisting of texturally and compositionally variable, slightly altered hyaloclastites, as well as sheet and pillow lavas. In contrast, chaotic assemblages of coarser-grained, more poorly sorted and more strongly palagonitized hyaloclastite tuffs and breccias, as well as scoria and lava are interpreted to have formed under sub- or englacial conditions in small, chimney-like ice cavities or ice-bound lakes. Irregularly shaped and erratically arranged hyaloclastite bodies produced at variable water levels appear to have resulted mainly from rapid changes of the eruptive environment due to repeated build-up and drainage of ice-bound lakes as well as the restricted space between the ice walls. We distinguish a "deep water" facies formed during high water levels of the lake, a hydroclastic shallow water and emergent facies (leakage of the lake or growth of the volcano above the water surface). Our model implies the temporary existence of large, stable lakes in Iceland probably formed by climatically induced ice melting. The highly complex edifices of many table mountains and similar volcanoes were constructed during several eruptive periods in changing environments characterized by contrasting volcanic and sedimentary processes. Received: 10 June 1997 / Accepted: 28 July 1998  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号