首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26篇
  免费   2篇
  国内免费   3篇
地质学   31篇
  2023年   1篇
  2022年   1篇
  2020年   1篇
  2016年   2篇
  2013年   2篇
  2012年   3篇
  2011年   2篇
  2010年   1篇
  2009年   1篇
  2008年   3篇
  2007年   1篇
  2006年   2篇
  2005年   1篇
  2004年   2篇
  2002年   3篇
  2001年   1篇
  2000年   1篇
  1997年   1篇
  1988年   2篇
排序方式: 共有31条查询结果,搜索用时 31 毫秒
11.
We performed detailed field and drill core mapping of partial melting features and felsic rocks (footwall granophyres, FWGRs) representing segregated and crystallized partial melts within the contact aureole of the Sudbury Igneous Complex (SIC) in the 1.85 Ga Sudbury impact structure. Our results, derived from mapping within the North (Windy Lake, Foy, Wisner areas) and East Ranges (Skynner, Frost areas) of the structure, reveal that partial melting was widespread in both felsic and mafic footwall units up to distances of 500 m from the basal contact of the SIC. Texturally and mineralogically, significant differences exist between rocks formed by partial melting within and between localities. In general, however, melt bodies are dominated by different quartz-feldspar intergrowths (e.g. granophyric, graphic) and miarolitic cavities up to 5 cm in diameter. Major and trace element compositions of Wisner and Frost FWGRs imply that they crystallized from melts dominantly derived from partial melting of felsic Levack Gneiss and Cartier granitoid rocks, as well as from gabbroic rocks only at Frost. These results accord with our observations on in situ partial melting features and crystallized melt of microscopic scale in both felsic and mafic rocks. We conclude that partial melting occurred at a pressure of 1.5 ± 0.5 kbar and at temperatures up to 750°C in the Wisner area and up to 900°C in the Frost and Windy Lake areas. Segregations of partial melt into veins and dikes are present in all localities, and were promoted by deformation of the Sudbury structure in the Penokean orogeny as indicated by dominant strike directions. Whereas veins and dikes reflect brittle conditions during melt migration, sheared melt pods in the Sudbury breccia matrix indicate ductile conditions during their crystallization. Our results suggest a close genetic association of partial melting, melt segregation, and hydrothermal processes responsible for remobilization of Cu–Ni–PGE sulphides into and within the SIC footwall.  相似文献   
12.
The George Sound Paragneiss (GSP) represents a rare Permo-Triassic unit in Fiordland that occurs as a km-scale pillar to gabbroic and dioritic gneiss of c . 120 Ma Western Fiordland Orthogneiss (WFO). It is distinguished from Palaeozoic paragneiss common in western Fiordland (Deep Cove Gneiss) by SHRIMP and laser-ablation U–Pb ages as young as c . 190 Ma and 176Hf/177Lu >0.2828 for detrital zircon grains. The Mesozoic age of the GSP circumvents common ambiguity in the interpretation of Cretaceous v. Palaeozoic metamorphic assemblages in the Deep Cove Gneiss. A shallowly dipping S1 foliation is preserved in the GSP distal to the WFO, cut by 100 m scale migmatite contact zones. All units preserve a steeply dipping S2 foliation. S1 staurolite and sillimanite inclusions in the cores of metapelitic garnet grains distal to the WFO preserve evidence for prograde conditions of T  <   650 °C and P <  8 kbar. Contact aureole and S2 assemblages include Mg-rich, Ca-poor cores to garnet grains in metapelitic schist that reflect WFO emplacement at ≈760 °C and ≈6.5 kbar. S2 kyanite-bearing matrix assemblages and Ca-enriched garnet rims reflect ≈650 °C and ≈11 kbar. Poorly oriented muscovite–biotite intergrowths and rare paragonite reflect post-S2 high- P retrogression and cooling. Pseudosection modelling in NCKFMASH defines a high- P anti-clockwise P–T history for the GSP involving: (i) mid- P amphibolite facies conditions; preceding (ii) thermal metamorphism adjacent to the WFO; followed by (iii) burial to high- P and (iv) high- P cooling induced by tectonic juxtaposition of cooler country rock.  相似文献   
13.
In southwest New Zealand, a suite of felsic diorite intrusions known as the Western Fiordland Orthogneiss (WFO) were emplaced into the mid to deep crust and partially recrystallized to high‐P (12 kbar) granulite facies assemblages. This study focuses on the southern most pluton within the WFO suite (Malaspina Pluton) between Doubtful and Dusky sounds. New mapping shows intrusive contacts between the Malaspina Pluton and adjacent Palaeozoic metasedimentary country rocks with a thermal aureole ~200–1000 m wide adjacent to the Malaspina Pluton in the surrounding rocks. Thermobarometry on assemblages in the aureole indicates that the Malaspina Pluton intruded the adjacent amphibolite facies rocks while they were at depths of 10–14 kbar. Similar P–T conditions are recorded in high‐P granulite facies assemblages developed locally throughout the Malaspina Pluton. Palaeozoic rocks more than ~200–1000 m from the Malaspina Pluton retain medium‐P mid‐amphibolite facies assemblages, despite having been subjected to pressures of 10–14 kbar for > 5 Myr. These observations contradict previous interpretations of the WFO Malaspina Pluton as the lower plate of a metamorphic core complex, everywhere separated from the metasedimentary rocks by a regional‐scale extensional shear zone (Doubtful Sound Shear Zone). Slow reaction kinetics, lack of available H2O, lack of widespread penetrative deformation, and cooling of the Malaspina Pluton thermal anomaly within c. 3–4 Myr likely prevented recrystallization of mid amphibolite facies assemblages outside the thermal aureole. If not for the evidence within the thermal aureole, there would be little to suggest that gneissic rocks which underlie several 100 km2 of southwest New Zealand had experienced metamorphic pressures of 10–14 kbar. Similar high‐P metamorphic events may therefore be more common than presently recognized.  相似文献   
14.
The grain‐scale spatial arrangement of melt in layer‐parallel leucosomes in two anatectic rocks from two different contact aureoles located in central Maine, USA, is documented and used to constrain the controls on grain‐scale melt localization. The spatial distribution of grain‐scale melt is inferred from microstructural criteria for recognition of mineral pseudomorphs after melt and mineral grains of the solid matrix that hosted the melt. In both rocks, feldspar mimics the grain‐scale distribution of melt, and quartz is the major constituent of the solid matrix. The feldspar pockets consist of individual feldspar grains or aggregates of feldspar grains that show cuspate outlines. They have low average width/length ratios (0.54 and 0.55, respectively), and are interstitial between more rounded and equant (width/length ratios 0.65 for both samples) quartz grains. In two dimensions, the feldspar pockets extend over distances equivalent to multiple quartz grain diameters, possibly forming a connected three‐dimensional intergranular network. Both samples show similar mesoscopic structural elements and in both samples the feldspar pockets have a shape‐preferred orientation. In one sample, feldspar inferred to replace melt is aligned subparallel to the shape‐preferred orientation of quartz, indicating that pre‐ or syn‐anatectic strain controlled the grain‐scale distribution of melt. In the other sample, the preferred orientation of feldspar inferred to replace melt is different from the orientations of all other mesoscopic or microscopic structures in the rock, indicating that differential stress controlled grain‐scale melt localization. This is probably facilitated by conditions of higher differential stress, which may have promoted microfracturing. Grain‐scale melt distribution and inferred melt localization controls give insight into possible grain‐scale deformation mechanisms in melt‐bearing rocks. Application of these results to the interpretation of deep crustal anatectic rocks suggests that grain‐scale melt distribution should be controlled primarily by pre‐ or syn‐anatectic deformation. Feedback relations between melt localization and deformation are to be expected, with important implications for deformation and tectonic evolution of melt‐bearing rocks.  相似文献   
15.
Abstract Anatectic migmatites of contrasting structural style are found adjacent to the contacts of the Ballachulish Igneous Complex, Argyllshire, Scotland. On the east flank, evidence for migmatization is largely restricted to the local development of millimetre-centimetre scale Kfs + Qtz-rich leucocratic segregations, which accompany fragmentation of brittle hornfels layers and ductile deformation of mm-cm scale semipelitic layers. Large volumes of semipelitic rock rich in feldspar and quartz on the east flank show no migmatitic features, and bedding is usually preserved undisturbed right up to the contact. On the west flank, in contrast, similar semipelitic rocks show widespread migmatitic features and disruption of layering is substantial and widespread over a 400 m wide zone. Within the west-flank migmatites, 1–100 cm scale rigid bedding fragments (schollen) may be suspended and disoriented in a semipelitic matrix that underwent ductile deformation. The P-T conditions on both flanks are in the same range: 3 kbar and 650–700°C. The contrast in gross structural style is believed to result from differences in the volumes of melt produced and differences in the proportion of rock in which the critical melt fraction of the rocks was exceeded. On the east flank, only on a mm-cm scale was enough melt locally accumulated to cause disruption of some layers and segregation of melt. On the west flank, melting proceeded substantially in a broad tract of semipelitic rocks, resulting in larger scale contrasts in rheology that led to the present chaotic structures in this zone. Because migmatization occurred at a pressure too low for muscovite dehydration melting, and at temperatures too low for substantial biotite dehydration melting, the different amounts of melting on the east and west flanks most probably resulted from the introduction of differing amounts of externally derived water. On the east flank, and throughout most of the aureole, the absence of melting even in quartzofeldspathic protoliths indicates that there was no substantial movement of fluid towards or away from the igneous complex during migmatization. The contrasting situation on the west flank may have resulted from devolatilization of underlying quartz diorite magma (? 690–710°C), which released heat and fluids into the overlying quartz- and feldspar-rich semipelites (solidus temperature ? 650–680°C).  相似文献   
16.
The emplacement of the Manaslu leucogranite body (Nepal, Himalaya)has been modelled as the accretion of successive sills. Theleucogranite is characterized by isotopic heterogeneities suggestinglimited magma convection, and by a thin (<100 m) upper thermalaureole. These characteristics were used to constrain the maximummagma emplacement rate. Models were tested with sills injectedregularly over the whole duration of emplacement and with twoemplacement sequences separated by a repose period. Additionally,the hypothesis of a tectonic top contact, with unroofing limitingheat transfer during magma emplacement, was evaluated. In thislatter case, the upper limit for the emplacement rate was estimatedat 3·4 mm/year (or 1·5 Myr for 5 km of granite).Geological and thermobarometric data, however, argue againsta major role of fault activity in magma cooling during the leucograniteemplacement. The best model in agreement with available geochronologicaldata suggests an emplacement rate of 1 mm/year for a relativelyshallow level of emplacement (granite top at 10 km), uninterruptedby a long repose period. The thermal aureole temperature andthickness, and the isotopic heterogeneities within the leucogranite,can be explained by the accretion of 20–60 m thick sillsintruded every 20 000–60 000 years over a period of 5Myr. Under such conditions, the thermal effects of granite intrusionon the underlying rocks appear limited and cannot be invokedas a cause for the formation of migmatites. KEY WORDS: granite emplacement; heat transfer modelling; High Himalayan Leucogranite; Manaslu; thermal aureole  相似文献   
17.
Gold mineralization in the Tanami district is hosted within moderately northwest dipping turbiditic sedimentary and basaltic volcanic rocks of the Paleoproterozoic Mt. Charles Formation. The gold occurs within a complex sinistral wrench-fault array and associated veins and alteration haloes. The main mineralized faults have a northerly trend and dip steeply east. Subsidiary structures trend at 030° and 070° and dip towards the southeast. Paleostress calculations based on fault striation populations and geometry (strike and dip) of faults indicate that at the time of the mineralizing event, σ 1 was sub-horizontal and SE–NW directed with σ 2 subvertical. Structural studies indicate that the mineralization occurred after the regional folding event and synchronous with the emplacement of felsic dykes into the mine sequence. Gold veins in the Tanami district are interpreted to be part of an outer thermal aureole gold system that formed during the emplacement of granitoids in the nearby ∼1,815 to ∼1,799 Ma Frankenia and/or Coomarie domes. Economic gold mineralization occurred late in the paragenetic history of the district. Gold is hosted by quartz-carbonate veins within shear zones, and also in the surrounding sericite- quartz- pyrite ± carbonate-altered wallrocks. Gold-mineralized veins precipitated at depths of 3 to 6 km from high temperature (∼300°C), low salinity (∼5 wt% NaCl equivalent) fluids with low CO2 contents. Barren quartz, dolomite and calcite veins that occur in pre- and post-mineralization thrust faults formed from high salinity (∼20 wt% NaCl equivalent), low temperature (∼120–150°C) basinal brines. Pyrite in the gold mineralized veins and alteration halos has lower δ 34S values (6.8 to 12.5‰) than local diagenetic pyrite (17.8 to 19.2‰) or pyrite in pre-mineralization thrust faults (31.7 to 37.1‰). The mineralizing fluids are inferred to have contained a well-homogenized mixture of magmatic and sedimentary-derived sulfur. Editorial handling: D. Huston  相似文献   
18.
Recognition of partial melting in metamorphic rocks is a difficult task, as leucosomes can have a variety of origins. By comparing the observed values of the solid-solid dihedral angles with the known equilibrium values, and close examination of the shapes and compositions of feldspar grains, it is possible to unequivocally identify melt textures. Textural relations in a series of meta-arkose samples from the contact aureole of the Ballachulish Igneous Complex in the Scottish Highlands demonstrate that, when former melt pockets are not highly deformed, their presence can be recognized petrographically, by detailed examination of textures on the grain scale. Identification of melt textures and their distribution in the Ballachulish aureole has led to appreciation of the fundamental role of magmatically derived H2O in producing the partial melting. It has also allowed calculation of the H2O flux involved, and recognition that fractures were the major fluid pathways during metamorphism.  相似文献   
19.
流体包裹体爆裂法作为一种辅助找矿手段,于20世纪70—80年代曾被前苏联和中国的地质工作者用于找矿勘探实践中,并取得了一定成效。以往许多爆裂法研究表明,矿体所在部位的爆裂强度(频次)较高,而随着远离矿体进入围岩,爆裂频次逐渐降低。一般认为这是由于围绕矿体热液活动强烈和流体包裹体丰度较高所致,因而在矿床(体)及其周围形成蒸发晕正异常。通过对胶西北地区焦家蚀变岩型金矿112线和144线8个钻孔的系统采样和爆裂法测试分析发现,焦家金矿床的花岗岩围岩爆裂曲线具有高的爆裂频次、明显的爆裂峰和高的相变峰,随着围岩蚀变增强,爆裂频次、爆裂峰和相变峰从钾化带经过黄铁绢英岩化带、硅化带到金矿石呈有规律降低,在矿体(化)中心,爆裂频次很低,不显示爆裂峰和相变峰,从而围绕矿体构成蒸发晕负异常。这些爆裂特征,特别是围绕矿体的蒸发晕负异常,对于胶北地区深部金矿找矿勘探具有潜在的应用价值。  相似文献   
20.
http://www.sciencedirect.com/science/article/pii/S1674987113000315   总被引:2,自引:0,他引:2  
The Panzhihua gabbroic intrusion,part of the plumbing system of the Emeishan large igneous province, intruded late-Proterozoic dolomites and marls about~263 Ma ago.The dolomites in the contact aureole were converted to brucite marbles and a diverse suite of forsterite,diopside and garnet skarns.The variation in mineralogy is explained in part by differences in the composition of the protolith,particularly the proportion of silica minerals and clay,and in part by transfer of elements from intruding magmas.The trace element compositions of most marbles and skarns are very similar to those of unmetamorphosed dolomites and marls,but some contain high Si,Ti,and Fe contents that are interpreted to have come from a magmatic source.Three brucite marbles sampled~10 m from the contact of the intrusion and named "enriched brucite marble" have trace element compositions very different from their dolomitic protolith:their rare earth elements are strongly enriched whereas levels of Nb-Ta,Zr-Hf and Ti are very low.These characteristics resemble those of carbonate liquid in equilibrium with silicate liquid or more probably with silicate minerals in the case of Panzhihua,a similarity we take to indicate that the sample underwent partial melting.Samples taken up to 300 m from the contact contain brucite indicating that high temperatures persisted well into the country rocks.However,other samples collected only tens of metres from the contact are only slightly recrystallized indicating that conditions in the aureole were highly variable.We suggest that temperatures within the aureole were controlled by conduction of heat from the main intrusion and by supply of additional heat from abundant small dykes within the aureole.Circulation of fluids derived from deeper levels in the aureole flushed the carbon dioxide from the dolomite,lowering temperature needed to partially melt carbonate to the temperatures attained near the intrusion.Irregular but extensive heating destabilized the carbonates of the aureole and decarbonation reactions associated with carbonate breakdown and melting emitted a large volume of CO2,with potential impact on global climate.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号