首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2088篇
  免费   325篇
  国内免费   1064篇
测绘学   10篇
大气科学   62篇
地球物理   237篇
地质学   2874篇
海洋学   100篇
天文学   22篇
综合类   78篇
自然地理   94篇
  2024年   35篇
  2023年   58篇
  2022年   84篇
  2021年   90篇
  2020年   111篇
  2019年   101篇
  2018年   127篇
  2017年   130篇
  2016年   144篇
  2015年   121篇
  2014年   132篇
  2013年   151篇
  2012年   135篇
  2011年   105篇
  2010年   121篇
  2009年   120篇
  2008年   134篇
  2007年   139篇
  2006年   136篇
  2005年   106篇
  2004年   280篇
  2003年   92篇
  2002年   76篇
  2001年   70篇
  2000年   69篇
  1999年   80篇
  1998年   48篇
  1997年   91篇
  1996年   42篇
  1995年   61篇
  1994年   40篇
  1993年   53篇
  1992年   36篇
  1991年   22篇
  1990年   25篇
  1989年   20篇
  1988年   9篇
  1987年   9篇
  1986年   6篇
  1985年   4篇
  1984年   3篇
  1983年   15篇
  1982年   5篇
  1981年   8篇
  1980年   12篇
  1979年   6篇
  1978年   3篇
  1976年   3篇
  1975年   3篇
  1974年   3篇
排序方式: 共有3477条查询结果,搜索用时 15 毫秒
91.
皮羌辉长岩体位于塔里木盆地柯坪断隆西部,皮羌村北约15 km处。该岩体的围岩包括志留系、泥盆系和石炭系—二叠系,新近系不整合覆盖其上。采集该辉长岩样品进行单矿物分离,取分离出的斜长石进行Ar-Ar定年。700~1 400 ℃的8个加热阶段析出的39Ar为总量的95.89%,在坪谱图上得到一个较稳定的坪,坪年龄为265.5±1.2 Ma; 与之相对应的等时线年龄为267.29±5.62 Ma。结合区域地质分析,皮羌辉长岩体的侵入时代为中二叠世早期; 是塔里木二叠纪岩浆活动的一部分。其侵入后基本未受后期构造热事件影响。  相似文献   
92.
The Taparko gold deposit, located in the eastern branch of the Proterozoic Birimian Bouroum-Yalogo greenstone belt (Burkina Faso) consists of a network of quartz veins developed in a N 170° trending shear zone (250 m wide, 4 km long) superimposed on the regional Birimian structural pattern. The quartz vein network is composed of: (a) a dominant array of quartz veins (type 1), parallel to the shear zone and comprising strongly deformed dark quartz exhibiting foliation, layering, ribbon, tension gashes, etc.; (b) oblique and subparallel related veins (type 2) of gray to white weakly deformed quartz crosscutting the dominant quartz veins resulting in breccia structures; and (c) shallow dipping veins (type 3), cross-cutting veins types 1 and 2 and filled by undeformed white buck structure quartz. Cross-cutting relationships and different quartz types in different veins and within individual veins imply a concomitant filling of the veins during the progressive deformation. Initial sinistral transcurrent shearing evolved with time to sinistral reverse shearing. Metallic minerals occur only in type 1 and 2 veins and were deposited in two stages, with native gold being related to second stage sulfides. Gold (and chalcopyrite) precipitated preferentially upon the surfaces of fractured pyrite grains in low-pressure sites (pressure shadow zones) around and/or within the sulfide grains (along subsequently annealed fractures). The formation of the South Taparko deposit can be divided into a succession of events: (a) during the first event, N 170°-directed sinistral transcurrent shearing resulted in a N 20° mylonitic foliation and fractured rock which allowed H2O-, CO2- and SiO2-rich fluids to circulate and deposit quartz with buck texture; (b) during the second event, type 1 quartz was strongly deformed and type 2 veins formed with sigmoidal shapes as viewed on a horizontal plane; and (c) during the third event, the sinistral transcurrent shearing evolved to sinistral reverse shearing and the deformation style evolved correspondingly from ductile to brittle-ductile. During the last phase of deformation gold nucleated and deposited in low-pressure zones. Received: 9 July 1997 / Accepted: 23 March 1998  相似文献   
93.
This paper presents new geological and geochemical data from the Shuanghu area in northern Tibet, which recorded the Early Toarcian Oceanic Anoxic Event. The stratigraphic succession in the Shuanghu area consists mostly of grey to dark-colored alternating oil shales, marls and mudstones. Ammonite beds are found at the top of the Shuanghu oil shale section, which are principally of early Toarcian age, roughly within the Harplocearasfalciferrum Zone. Therefore,the oil shale strata at Shuanghu can be correlated with early Toarcian black shales distributing extensively in the European epicontinental seas that contain the records of an Oceanic Anoxic Event. Sedimentary organic matter of laminated shale anomalously rich in organic carbon across the Shuanghu area is characterized by high organic carbon contents, ranging from 1.8% to 26.1%. The carbon isotope curve displays the δ^13C values of the kerogen (δ^13Ckerogen) fluctuating from -26.22 to -23.53‰ PDB with a positive excursion close to 2.17‰, which, albeit significantly smaller, may also have been associated with other Early Toarcian Oceanic Anoxic Events (OAEs) in Europe. The organic atomic C/N ratios range between 6 and 43, and the curve of C/N ratios is consistent with that of the δ^13Ckerogen values. The biological assemblage,characterized by scarcity of benthic organisms and bloom of calcareous nannofossils (coccoliths), reveals high biological productivity in the surface water and an unfavorable environment for the benthic fauna in the bottom water during the Oceanic Anoxic Event. On the basis of organic geochemistry and characteristics of the biological assemblage, this study suggests that the carbon-isotope excursion is caused by the changes of sea level and productivity, and that the black shale deposition, especially oil shales, is related to the bloom and high productivity of coccoliths.  相似文献   
94.
Traditionally the Chinese South Tianshan has been regarded as a late Paleozoic orogenic belt. However, little is known about the early Paleozoic tectonic architecture of the region. This paper presents the first evidence of Cambrian–Ordovician MORB-type basalts and adakitic diorites on the southern margin of the Yili plate in China. Basalts from Xiate in southwestern Tianshan show a typical transitional (T-) MORB and ferrobasalt composition, which indicate a formation at a propagating spreading ridge. The basalts give a weighted mean 206Pb/238U crystallization age of 516.3 ± 7.4 Ma by SHRIMP U–Pb zircon dating and have experienced contact metamorphism due to the intrusion of a dioritic pluton. The dioritic pluton has a weighted mean 206Pb/238U crystallization age of 470 ± 12 Ma and geochemical characteristics resembling that of adakitic rocks. The pluton is considered to have been formed by partial melting of garnet amphibolites from thickened lower crust in arc or continental collision settings. The basalts and diorites are considered to outline the eastern extension of the early Paleozoic suture zone, the Nikolaev Line, which stretches east–west for hundreds of kilometers between the Northern Tianshan and Central Tianshan terranes of Kyrgyzstan. Our findings substantiate that the Yili and Central Tianshan plates were separated by the early Paleozoic Terskey ocean. The Terskey ocean probably closed during the early stage of the late Ordovician (Lomize et al. in Geotectonics 31(6):463–482, 1997), resulting in the final amalgamation of the Yili and Central Tianshan plates. Consequently, an early Paleozoic suture zone is documented in the Chinese Tianshan region, which is most likely represented by the North Nalati fault.  相似文献   
95.
产于北大河群的早元古代火山岩是北祁连山西段最主要的三期火山岩之一,其地球化学特征表明,该期火山岩的原岩为具有双峰式组合的拉斑玄武岩和中酸笥凝灰岩。两者具有完全不同的稀土分布型式,前者以极低的富集轻稀土为特征,而后者以强烈富集轻稀土的特征;基性火山岩的微量元素分布曲线指示了其形成了裂陷槽环境。结合Nd同位素特征以及区域2得出本区早元古代变质火山岩形成于裂陷槽环境。  相似文献   
96.
郯庐断裂中段的早白垩世拉分盆地(英文)   总被引:5,自引:0,他引:5       下载免费PDF全文
石场-中楼盆地位于郯庐断裂带中段的沂河-沭河地区。郯庐断裂左旋切割了秦岭-大别-胶南造山带及前中生代地层,研究区内沂河-沭河断裂切割了年龄为136.2Ma(40Ar/39Ar法)的胶南造山带北缘剪切带,并被时代为119Ma(K-Ar法)的青山群地层不整合覆盖,显示郯庐断裂在早白垩世曾发生了明显的走滑运动。石场-中楼盆地受沂河-沭河断裂的控制,整体为长60km、宽30km,长宽比近于2∶1的“菱型”构造盆地。盆地内早白垩世莱阳群的沉积厚度大于6263.71m,沉积速率大于0.4mm/a;沉积相特征反映盆地具有深而窄,沉积速度快、沉积相变剧烈的特点。盆地沉积中心的迁移方向与边界断裂的左旋走滑效应一致,“边走滑边沉积”的特征明显。根据构造背景、构造格架及沉积特征,确定石场-中楼盆地为郯庐断裂早白垩世左旋走滑过程中形成的拉分盆地  相似文献   
97.
东北冷涡持续活动时期的北半球500 hPa环流特征分析   总被引:21,自引:2,他引:21       下载免费PDF全文
分别对5月和6~8月东亚东北冷涡活动典型的多寡年份北半球500 hPa高度距平场进行合成、频次累积和相关分析,结果表明:东亚东北冷涡持续性活动不仅与前期、同期和后期北半球的大气环流异常密切相关,而且也是异常区的重要组成部分;500hPa 5月和6~8月东北冷涡活动多寡年的同期500hPa高度距平合成场差异显著;6~8月东北冷涡典型多寡年的同期距平场均与前冬(12~2月)的主要异常区反位相,存在半年尺度的遥相关,与北太平洋涛动(NPO)类同的500 hPa高度距平场,如前冬呈正位相,预报6~8月东北冷涡持续活动弱,反之,冷涡持续活动强;合成场和相关场通过信度检验的关键区主要位于东亚中高纬度至阿留申群岛及其以南的副热带地区、青藏高原接近巴基斯坦一侧和北非乍得盆地与撒哈拉大沙漠等地区;由此可以认为东亚地区中高纬度5月和6~8月东北冷涡持续性活动是北半球大气环流异常持续或调整的重要表征.  相似文献   
98.
Seismic and sequence stratigraphy analyses, petroleum-well control and surface data studies of the Majoura–El Hfay region in the Central Atlas of Tunisia had led to identify and calibrate Jurassic seismic horizons. Seismic stratigraphic sections, seismic tectonics analyses, isochron and isopach mapping of Jurassic sequences show a differentiated structuring of platform and depocentre blocks limited by deep-seated NE–SW, north–south east–west and NW–SE faults intruded by Upper Triassic salt. The early salt migration seems to have started by the platform fracturing during the Lower Liassic rifting event. These movements are fossilized by thickness variations of Jurassic horizons, aggrading and retrograding onlap and toplap structures between subsiding rim-syncline gutters and high platform flanks intruded by salt pillows and domes. The salt migration is also attested by Middle and Upper Jurassic space depocentre migrations. Around the Majoura–El Hfay study blocks bounded by master faults, Triassic salt have pierced the Cretaceous and Tertiary sedimentary cover in a salt diapir extrusion and salt wall structures. To cite this article: D. Tanfous Amri et al., C. R. Geoscience 337 (2005).  相似文献   
99.
The Jianchang Basin is one of the main localities of the precious fossils of Jehol Biota in western Liaoning. The fossil-bearing horizons are mainly in the Yixian- and J iufotang formations. In the Weijialing-Yaolugou of southwest Jianchang Basin, many precious fossils have been found at Luojiagou Bed of the 2nd Member of the Yixian Formation and at Xidian Bed of the 1st member of the Jiufotang Formation. The geologic setting, sedimentary environment and paleogeography of the precious fossil-bearing beds were also studied.  相似文献   
100.
During the Late Carboniferous to Early Permian, a rift was formed by post-collisional extension after ocean closure or an island arc-related basin formed by Paleo-Asian Ocean (PAO) subduction in the Xi Ujimqin area. Nevertheless, the closure time of the PAO is still under debate. Thus, to identify the origin of the PAO, the geochemistry and U-Pb age of zircons were analyzed for the extra-large deep marine, polymict clastic boulders and sandstones in the Shoushangou Formation within the basin. The analyses revealed magmatic activity and tectonic evolution. The conglomerates include megaclasts of granite (298.8 ± 9.1?Ma) and granodiorite porphyry (297.1 ± 3.1?Ma), which were deposited by muddy debris flow. Results of this study demonstrated that the boulders of granitoids have the geochemistry of typical I-type granite, characterized by low Zr + Nb + Ce + Y and low Ga/Al values. The granitoid boulders were formed in island arc setting, indicating the presence of arc magmatism in the area that is composed of the Late Carboniferous to Early Permian subduction-related granitoid in southern Xi Ujimqin. Multiple diagrams for determining sedimentary provenance using major and trace elements indicate that Shoushangou sediments originated from continental island arc-related felsic rocks. Detrital zircon U-Pb age cluster of 330–280?Ma was obtained, indicating input from granite, ophiolite, Xilin Gol complex, and Carboniferous sources to the south. The basin was geographically developed behind the arc during the Early Permian period because the outcropped intrusive rocks in the Late Carboniferous to Early Permian form a volcanic arc. The comprehensive analyses of source areas suggest that Shoushangou sediments developed in a backarc basin in response to the northward subduction of the PAO. The backarc basin and intrusive rocks, in addition to previously published Late Carboniferous to Early Permian magmatic rocks of arc unit in Xilin Gol, confirm the presence of an Early Permian trench-arc-basin system in the region, represented by the Baolidao arc and Xi Ujimqin backarc basin. This study highlights the importance and potential of combined geochemical and geochronological studies of conglomerates and sandstone for reconstructing the geodynamic setting of a basin.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号