首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1318篇
  免费   139篇
  国内免费   193篇
测绘学   11篇
大气科学   227篇
地球物理   210篇
地质学   334篇
海洋学   653篇
天文学   17篇
综合类   14篇
自然地理   184篇
  2024年   2篇
  2023年   5篇
  2022年   23篇
  2021年   26篇
  2020年   27篇
  2019年   38篇
  2018年   48篇
  2017年   41篇
  2016年   53篇
  2015年   50篇
  2014年   87篇
  2013年   105篇
  2012年   36篇
  2011年   66篇
  2010年   54篇
  2009年   83篇
  2008年   97篇
  2007年   96篇
  2006年   101篇
  2005年   62篇
  2004年   67篇
  2003年   65篇
  2002年   51篇
  2001年   50篇
  2000年   58篇
  1999年   28篇
  1998年   29篇
  1997年   45篇
  1996年   19篇
  1995年   20篇
  1994年   16篇
  1993年   13篇
  1992年   10篇
  1991年   8篇
  1990年   7篇
  1989年   6篇
  1988年   15篇
  1987年   8篇
  1986年   4篇
  1985年   8篇
  1984年   9篇
  1983年   5篇
  1982年   6篇
  1981年   2篇
  1979年   1篇
排序方式: 共有1650条查询结果,搜索用时 31 毫秒
81.
Abstract The Joggins Formation was deposited in the Cumberland Basin, which experienced rapid mid‐Carboniferous subsidence on bounding faults. A 600 m measured section of coastal and alluvial plain strata comprises cycles tens to hundreds of metres thick. The cycles commence with coal and fossiliferous limestone/siltstone intervals, interpreted as widespread flooding events. These intervals are overlain by coarsening‐upward successions capped by planar‐based sandstone mounds, up to 100 m in width that represent the progradation of small, river‐generated delta lobes into a standing body of open water developed during transgression. The overlying strata contain sand‐rich heterolithic packages, 1–8 m thick, that are associated with channel bodies 2–3 m thick and 10–50 m wide. Drifted plant debris, Calamites groves and erect lycopsid trees are preserved within these predominantly green‐grey heterolithic sediments, which were deposited on a coastal wetland or deltaic plain traversed by channel systems. The cycles conclude with red siltstones, containing calcareous nodules, that are interbedded with thin sandstones and associated with both single‐storey channel bodies (1–1·5 m thick and 2–3 m wide) and larger, multistorey channels (3–6 m thick) with incised margins. Numerous channel bodies at the same level suggest that multiple‐channel, anastomosed river systems were developed on a well‐drained floodplain. Many minor flooding surfaces divide the strata into parasequences with dominantly progradational and aggradational stacking patterns. Multistorey channel bodies are relatively thin, fine grained and modestly incised, and palaeosols are immature and cumulative. The abundance and prominence of flooding surfaces suggests that base‐level rise was enhanced, whereas the lack of evidence for abrupt basinward stepping of facies belts, coupled with the absence of strong fluvial incision and mature palaeosols, suggests that base‐level fall was suppressed. These architectural features are considered to reflect a tectonic architectural signature, in accordance with the high‐subsidence basinal setting. Evidence for restricted marine influence and variation in floral assemblages suggests modulation by eustatic and climatic effects, although their relative importance is uncertain.  相似文献   
82.
本文详尽分析了冰岛低压和大西洋高压的长期变化规律,发现两者均具有明显的阶段性变化,而且冰岛低压和大西洋高压的强度具有明显的反相关。同时,还分析了大西洋高压和冰岛低压与我国气候的关系,发现大西洋高压与我国冬季气温基本呈正相关,而冰岛低压与我国气温大致呈反相关,但均没有显著影响,所以两者都不是影响我国气候变化的重要天气系统。  相似文献   
83.
Using the data of ECMWF (European Center for Medium-range Weather Forecasts) to undertake composite diagnoses of 16 explosive cyclones occurring at the Atlantic and the Pacific Oceans,it is found that there are a lot of obvious discrepancies on the basic fields between these strong and weak explosive cyclones.The major reasons why the explosive cyclones over the Atlantic are stronger than those over the Pacific Ocean are that the non-zonal upper jet and the low-level warm moist flow over the Atlantic are stronger.The non-zonal upper jet offers stronger divergence,baroclinicity and baroclinic instability fields for explosive cyclones.Anticyclonic curvature at the high level of strong explosive cyclones is easy to make the inertia-gravitational wave developing at the moment of northward transfer of energy and stimulate the cyclones deepening quickly.Warm advection and diabatic heating can cause the upper isobaric surface lifting,as a result,the anticyclone curvature of cyclones enlarges,and wave energy develops easily as well.The most powerful period of the development of explosive cyclones is just the time when the positive vorticity advection center is located over the low vortex.At the upper level,when the distribution of potential vorticity contours changes suddenly from rareness to denseness,and the large values of the potential vorticity both in the west and north sides of cyclones extend downwards together,then cyclones are easy to explosively develop.The formation of strong explosive cyclones is closely related with the non-zonality of upper jet and the anticyclonic curvature.  相似文献   
84.
Fine sediment deposition in the ocean is complicated by the cohesive nature of muds and their tendency to flocculate. The result is disaggregated inorganic grain size (DIGS) distributions of bottom sediment that are influenced by single‐grain and floc deposition. This study outlines a parametric model that characterizes bottom sediment DIGS distributions. Modelled parameters are then used to infer depositional conditions that account for the regional variation in the grain sizes deposited by turbidity currents on the Laurentian Fan–Sohm Abyssal Plain, offshore south‐eastern Canada. Results indicate that, on the channellized Laurentian Fan, the mass fraction of floc‐deposited mud increases only slightly downslope. The small evolution in this fraction arises because sediment concentration and turbulent energy are associated in turbidity currents. On the Sohm Abyssal Plain, however, the mass fraction of floc‐deposited mud decreases, probably as a result of lower sediment concentration at this source‐distal site. Estimates of the mass fraction of mud deposited as flocs suggest that floc deposition is the dominant mode by which sediment is lost from suspension, although single‐grain deposition contributes more to the depositional flux in proximal areas where high energy breaks flocs and in distal areas where low sediment concentration limits floc formation. It is concluded that, throughout the dispersal system, changes in the fraction of flocculated mud deposited from turbidity currents reflect changes in sediment concentration and energy downslope.  相似文献   
85.
Geological mapping and diamond exploration in northern Quebec and Labrador has revealed an undeformed ultramafic dyke swarm in the northern Torngat Mountains. The dyke rocks are dominated by an olivine-phlogopite mineralogy and contain varying amounts of primary carbonate. Their mineralogy, mineral compositional trends and the presence of typomorphic minerals (e.g. kimzeyitic garnet), indicate that these dykes comprise an ultramafic lamprophyre suite grading into carbonatite. Recognized rock varieties are aillikite, mela-aillikite and subordinate carbonatite. Carbonatite and aillikite have in common high carbonate content and a lack of clinopyroxene. In contrast, mela-aillikites are richer in mafic silicate minerals, in particular clinopyroxene and amphibole, and contain only small amounts of primary carbonate. The modal mineralogy and textures of the dyke varieties are gradational, indicating that they represent end-members in a compositional continuum.

The Torngat ultramafic lamprophyres are characterized by high but variable MgO (10–25 wt.%), CaO (5–20 wt.%), TiO2 (3–10 wt.%) and K2O (1–4 wt.%), but low SiO2 (22–37 wt.%) and Al2O3 (2–6 wt.%). Higher SiO2, Al2O3, Na2O and lower CO2 content distinguish the mela-aillikites from the aillikites. Whereas the bulk rock major and trace element concentrations of the aillikites and mela-aillikites overlap, there is no fractional crystallization relation between them. The major and trace element characteristics imply related parental magmas, with minor olivine and Cr-spinel fractionation accounting for intra-group variation.

The Torngat ultramafic lamprophyres have a Neoproterozoic age and are spatially and compositionally closely related with the Neoproterozoic ultramafic lamprophyres from central West Greenland. Ultramafic potassic-to-carbonatitic magmatism occurred in both eastern Laurentia and western Baltica during the Late Neoproterozoic. It can be inferred from the emplacement ages of the alkaline complexes and timing of Late Proterozoic processes in the North Atlantic region that this volatile-rich, deep-seated igneous activity was a distal effect of the breakup of Rodinia. This occurred during and/or after the rift-to-drift transition that led to the opening of the Iapetus Ocean.  相似文献   

86.
87.
88.
Broadly speaking, there is, at least within geomorphic circles, a general acceptance that rocks with low albedos will warm both faster and to higher temperatures than rocks with high albedos, reflectivity influencing radiative warming. Upon this foundation are built notions of weathering in respect of the resulting thermal differences, both at the grain scale and at the scale of rock masses. Here, a series of paving bricks painted in 20 per cent reflectivity intervals from black through to white were used to monitor albedo‐influenced temperatures at a site in northern Canada in an attempt to test this premise. Temperatures were collected, for five months, for the rock surface and the base of the rock, the blocks being set within a mass of local sediment. Resulting thermal data did indeed show that the dark bricks were warmer than the white but only when their temperatures were equal to or cooler than the air temperature. As brick temperature exceeded that of the air, so the dark and light bricks moved to parity; indeed, the white bricks frequently became warmer than the dark. It is argued that this ‘negating’ of the albedo influence on heating is a result of the necessity of the bricks, both white and black, to convect heat away to the surrounding cooler air; the darker brick, being hotter, initially convects faster than the white as a product of the temperature difference between the two media. Thus, where the bricks become significantly hotter than the air, they lose energy to that air and so their respective temperatures become closer, the albedo influence being superceded by the requirement to equilibrate with the surrounding air. It is argued that this finding will have importance to our understanding of weathering in general and to our perceptions of weathering differences between different lithologies. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   
89.
230Th, 232Th and 234Th were analyzed in sinking particles collected by moored and drifting sediment traps in the NE Atlantic Ocean (POMME experiment) in order to constrain the phase(s) carrying Th isotopes in the water column. It reveals a contrasted behaviour between 234Th and 230Th. 234Th is correlated to the particulate organic carbon suggesting that it is primarily scavenged by organic compounds in the surface waters. 230Thxs is correlated with Mn, Ba and the lithogenic fraction that are enriched in small suspended particles and incorporated in the sinking particulate flux throughout the water column. The lack of correlation between 230Thxs and CaCO3 or biogenic silica (bSi) indicates that CaCO3 and bSi are not responsible for 230Th scavenging in the deep waters of this oceanic region. 230Th is generally correlated with the lithogenic content of the trapped material but this correlation disappears in winter during strong atmospheric dust inputs suggesting that lithogenic matter is not directly responsible for 230Th scavenging in the deep waters or that sufficient time is required to achieve particle–solution equilibration. MnO2 could be the prevalent 230Thxs-bearing phase. The narrow range of Kd_MnO2Th obtained for very contrasted oceanic environments supports a global control of 230Thxs scavenging by MnO2 and raises the possibility that the 230Th–231Pa fractionation is controlled by the amount of colloidal MnO2 in seawater.  相似文献   
90.
A first study from the subtropical western Atlantic, using 231Pa/230Th ratios as a kinematic proxy for deep water circulation, provided compelling evidence for a strong link between climate and the rate of Meridional Overturning Circulation (MOC) over the last deglaciation. However, these results warrant confirmation from additional locations and water depths because the interpretation of the sedimentary 231Pa/230Th ratio in terms of circulation vigor can be biased by variations in particle flux and composition. We have measured 231Pa/230Th in a core from the Iberian margin, in the Northeastern Atlantic basin, and have compared these new results to the data from the western Atlantic basin. We find that the reduction in the circulation during H1 and YD and the subsequent increases first recognized in the sediment deposited on Bermuda Rise are also evident in the eastern basin, in a totally different sedimentary regime, confirming that sedimentary 231Pa/230Th ratios record basin-wide changes in deep water circulation. However, some differences between the eastern and western records are also recognized, providing preliminary evidence to differentiate between renewal rates in the two North Atlantic basins and between shallower and deeper overturning. Our results suggest the possible existence of two sources of Glacial North Atlantic Intermediate Deep Water (GNAIW), one in the south Labrador Sea and another west of Rockall Plateau. Both sources contributed to the meridional overturning but the two had different sensitivity to meltwater from the Laurentide and the Fennoscandian ice sheets during the deglaciation. These results indicate that additional information on the geometry and strength of the ventilation of the deep Atlantic can be obtained by contrasting the evolution of sediment 231Pa/230Th in different sections of the Atlantic Ocean.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号