首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   514篇
  免费   0篇
  国内免费   1篇
地质学   7篇
天文学   508篇
  2022年   1篇
  2019年   3篇
  2016年   1篇
  2013年   2篇
  2012年   1篇
  2011年   65篇
  2010年   62篇
  2009年   65篇
  2008年   64篇
  2007年   52篇
  2006年   43篇
  2005年   44篇
  2004年   42篇
  2003年   39篇
  2002年   7篇
  2001年   1篇
  2000年   2篇
  1997年   3篇
  1996年   4篇
  1995年   3篇
  1993年   7篇
  1992年   3篇
  1990年   1篇
排序方式: 共有515条查询结果,搜索用时 0 毫秒
11.
Near-infrared spectra of the near-Earth object (100085) 1992 UY4 are similar to those of P-type asteroids, providing a fitted geometric albedo of 0.052±0.005 and an effective diameter of 1.68±0.08 km. This object, with a likely outer-belt origin, also exhibits a 3-μm absorption feature with a band depth of 3%±1%, corresponding to a regolithic bulk hydrogen-to-silicon ratio of 0.30±0.05. The bulk of this hydrogen seems to be present in H2O-dominated minerals.  相似文献   
12.
J. Schubart 《Icarus》2007,188(1):189-194
Inside the 3/2 mean motion resonance some Hilda-type orbits show effects of a three-body resonance that includes the frequency of the libration due to the 3/2 resonance. A graphical method presents numerical results for such orbits and demonstrates in 6 cases a process of temporary libration, that is ruled by the additional resonance together with the secular period of the eccentricities of Jupiter and Saturn.  相似文献   
13.
Initial asteriod orbits are determined by a least squares adjustment of an arbitrary number (N) of optical and radar observations. The usual separation, into an orbit determination by three observations and a subsequent differential orbit improvement, is combined into a single algorithm. A priori information is used for very small arcs. Ephemerides very suitable for linking are obtained by strictly linear computations.  相似文献   
14.
We have performed new simulations of two different scenarios for the excitation and depletion of the primordial asteroid belt, assuming Jupiter and Saturn on initially circular orbits as predicted by the Nice Model of the evolution of the outer Solar System [Gomes, R., Levison, H.F., Tsiganis, K., Morbidelli, A., 2005. Nature 435, 466-469; Tsiganis, K., Gomes, R., Morbidelli, A., Levison, H.F., 2005. Nature 435, 459-461; Morbidelli, A., Levison, H.F., Tsiganis, K., Gomes, R., 2005. Nature 435, 462-465]. First, we study the effects of sweeping secular resonances driven by the depletion of the solar nebula. We find that these sweeping secular resonances are incapable of giving sufficient dynamical excitation to the asteroids for nebula depletion timescales consistent with estimates for solar-type stars, and in addition cannot cause significant mass depletion in the asteroid belt or produce the observed radial mixing of different asteroid taxonomic types. Second, we study the effects of planetary embryos embedded in the primordial asteroid belt. These embedded planetary embryos, combined with the action of jovian and saturnian resonances, can lead to dynamical excitation and radial mixing comparable to the current asteroid belt. The mass depletion driven by embedded planetary embryos alone, even in the case of an eccentric Jupiter and Saturn, is roughly 10-20× less than necessary to explain the current mass of the main belt, and thus a secondary depletion event, such as that which occurs naturally in the Nice Model, is required. We discuss the implications of our new simulations for the dynamical and collisional evolution of the main belt.  相似文献   
15.
Photometric data on 17 binary near-Earth asteroids (15 of them are certain detections, two are probables) were analysed and characteristic properties of the near-Earth asteroid (NEA) binary population were inferred. We have found that binary systems with a secondary-to-primary mean diameter ratio Ds/Dp?0.18 concentrate among NEAs smaller than 2 km in diameter; the abundance of such binaries decreases significantly among larger NEAs. Secondaries show an upper size limit of Ds=0.5-1 km. Systems with Ds/Dp?0.5 are abundant but larger satellites are significantly less common. Primaries have spheroidal shapes and they rotate rapidly, with periods concentrating between 2.2 to 2.8 h and with a tail of the distribution up to ∼4 h. The fast rotators are close to the critical spin for rubble piles with bulk densities about 2 g/cm3. Orbital periods show an apparent cut-off at Porb∼11 h; closer systems with shorter orbital periods have not been discovered, which is consistent with the Roche limit for strengthless bodies. Secondaries are more elongated on average than primaries. Most, but not all, of their rotations appear to be synchronized with the orbital motion; nonsynchronous secondary rotations may occur especially among wider systems with Porb>20 h. The specific total angular momentum of most of the binary systems is similar to within ±20% and close to the angular momentum of a sphere with the same total mass and density, rotating at the disruption limit; this suggests that the binaries were created by mechanism(s) related to rotation near the critical limit and that they neither gained nor lost significant amounts of angular momentum during or since formation. A comparison with six small asynchronous binaries detected in the main belt of asteroids suggests that the population extends beyond the region of terrestrial planets, but with characteristics shifted to larger sizes and longer periods. The estimated mean proportion of binaries with Ds/Dp?0.18 among NEAs larger than 0.3 km is 15±4%. Among fastest rotating NEAs larger than 0.3 km with periods between 2.2 and 2.8 h, the mean proportion of such binaries is (66+10−12)%.  相似文献   
16.
James C. Granahan 《Icarus》2011,213(1):265-272
On October 29, 1991 the Galileo spacecraft encountered Asteroid 951 Gaspra with a telescopic CCD camera and a near infrared mapping spectrometer that provided the first optically resolved views of any asteroid. Data from these two sensors were combined to detect the spectral signature of iron bearing minerals on this S-type asteroid. A minimum of two spectral units were identified on 951 Gaspra, both containing a higher relative abundance of olivine than those found in ordinary chondrites. These data indicate that this S asteroid is an object that has undergone igneous differentiation processes. A 2.7 μm spectral feature was also detected on the surface of 951 Gaspra and may be due to the presence of structural OH.  相似文献   
17.
We present a mineralogical assessment of 12 Maria family asteroids, using near-infrared spectral data obtained over the years 2000-2009 combined with visible spectral data (when available) to cover the spectral interval of 0.4-2.5 μm. Our analysis indicates the Maria asteroid family, which is located adjacent to the chaotic region of the 3:1 Kirkwood Gap, appears to be a true genetic family composed of assemblages analogous to mesosiderite-type meteorites. Dynamical models by Farinella et al. (Farinella, P., Gunczi, R., Froeschlé, Ch., Froeschlé, C., [1993]. Icarus 101, 174-187) predict this region should supply meteoroids into Earth-crossing orbits. Thus, the Maria family is a plausible source of some or all of the mesosiderites in our meteorite collections. These individual asteroids were most likely once part of a larger parent object that was broken apart and dispersed. One of the Maria dynamical family members investigated, ((695) Bella), was found to be unrelated to the genetic Maria family members. The parameters of (695) Bella indicate an H-chondrite assemblage, and that Bella may be a sister or daughter of Asteroid (6) Hebe.  相似文献   
18.
R.G. Mayne  J.M. Sunshine  S.J. Bus 《Icarus》2011,214(1):147-160
High quality VNIR spectra of 15 Vestoids, small asteroids that are believed to originate from Vesta, were collected and compared to laboratory spectra and compositional data for selected HED meteorites. A combination of spectral parameters such as band centers, and factors derived from Modified Gaussian Model fits (band centers, band strengths, calculation of the low to high-Ca pyroxene ratio) were used to establish if each Vestoid appeared most like eucrite or diogenite material, or a mixture of the two (howardite). This resulted in the identification of the first asteroid with a ferroan diogenite composition, 2511 Patterson. This asteroid can be used to constrain the size of diogenite magma chambers within the crust of Vesta. The Vestoids indicate that both large-scale homogeneous units (>5 km) and smaller-scale heterogeneity (<1 km) exist on the surface of Vesta, as both monomineralogic (eucrite or diogenite material alone) and mixed (both eucrite and diogenite) spectra are observed. The small-scale of the variation observed within the Vestoid population is predicted by the partial melting model, which has multiple intrusions penetrating into the crust of Vesta. It is much more difficult to reconcile the observations here with the magma ocean model, which would predict much more homogeneous layers on a large-scale both at the surface and with depth.  相似文献   
19.
Patrick Michel  Marco Delbo 《Icarus》2010,209(2):520-534
In this paper, we present our study of the orbital and thermal evolutions, due to solar radiative heating, of four near-Earth asteroids (NEAs) considered as potential target candidates for sample return space missions to primitive asteroids. We used a dynamical model of the NEA population to estimate the most likely source region and orbital history of these objects. Then, for each asteroid, we integrated numerically over their entire lifetime a set of 14 initially indistinguishable orbit (clones), obtained by small variations of the nominal initial conditions. Using a thermal model, we then computed surface and sub-surface temperatures of these bodies during their dynamical history. Our aim is to determine whether these bodies are likely to have experienced high temperature level, and whether great temperature changes can be expected due to the orbital changes as well as their maximum and minimum values. Such information is important in the framework of sample return space missions whose goal is to bring back pristine materials. The knowledge of the temperature range of materials at different depth over the orbital evolution of potential targets can help defining sampling strategies that ensure the likelihood that unaltered material will be brought back. Our results suggest that for all the considered potential targets, the surface has experienced for some time temperatures greater than 400 K and at most 500 K with 50% probability. This probability drops rapidly with increasing temperature. Sub-surface materials at a depth of only 3 cm are much more protected from high temperature and generally do not reach temperatures exceeding 450 K (with 50% probability). They should thus be unaltered at this depth at least from a Sun-driven heating point of view. On the other hand, surface material for some of the considered objects can have a range of temperature which can make them less reliable as pristine materials. However, it is assumed here that the same material is constantly exposed to solar heat, while regolith turnover may occur. The latter can be caused by different processes such as seismic shaking and/or impact cratering. This would reduce the total time that materials are exposed to a certain temperature. Thus, it is very likely that a sample collected from any of the four considered targets, or any primitive NEA with similar dynamical properties, will have components that will be thermally unaltered as long as some of it comes from only 3 to 5 cm depth. Such a depth is not considered difficult to reach with some of the current designs of sampling devices.  相似文献   
20.
A. Cellino  M. Delbò 《Icarus》2010,209(2):556-563
We present the results of a campaign of polarimetric observations of small asteroids belonging to the Karin and Koronis families, carried out at the ESO Cerro Paranal Observatory using the VLT-Kueyen 8-m telescope. The Karin family is known to be very young, having likely been produced by the disruption of an original member of the Koronis family less than 6 Myr ago. The purpose of our study was to derive polarimetric properties for a reasonable sample of objects belonging to the two families, in order to look for possible systematic differences between them, to be interpreted in terms of differences in surface properties, in particular albedo. In turn, systematic albedo differences might be caused by different times of exposure to space weathering processes experienced by the two groups of objects. The results of our analysis indicate that no appreciable difference exists between the polarimetric properties of Karin and Koronis members. We thus find that space-weathering mechanisms may be very efficient in affecting surface properties of S-class asteroids on very short timescales. This result complements some independent evidence found by recent spectroscopic studies of very young families.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号