全文获取类型
收费全文 | 160篇 |
免费 | 24篇 |
国内免费 | 35篇 |
专业分类
测绘学 | 3篇 |
大气科学 | 19篇 |
地球物理 | 4篇 |
地质学 | 144篇 |
海洋学 | 24篇 |
综合类 | 15篇 |
自然地理 | 10篇 |
出版年
2024年 | 3篇 |
2023年 | 3篇 |
2022年 | 4篇 |
2021年 | 4篇 |
2020年 | 1篇 |
2018年 | 1篇 |
2016年 | 7篇 |
2015年 | 3篇 |
2014年 | 10篇 |
2013年 | 5篇 |
2012年 | 15篇 |
2011年 | 7篇 |
2010年 | 14篇 |
2009年 | 15篇 |
2008年 | 16篇 |
2007年 | 13篇 |
2006年 | 18篇 |
2005年 | 11篇 |
2004年 | 3篇 |
2003年 | 9篇 |
2002年 | 2篇 |
2001年 | 2篇 |
2000年 | 5篇 |
1999年 | 3篇 |
1998年 | 4篇 |
1997年 | 5篇 |
1996年 | 4篇 |
1995年 | 3篇 |
1994年 | 3篇 |
1993年 | 5篇 |
1992年 | 5篇 |
1991年 | 7篇 |
1990年 | 3篇 |
1989年 | 4篇 |
1987年 | 1篇 |
1984年 | 1篇 |
排序方式: 共有219条查询结果,搜索用时 0 毫秒
1.
选取广西北部湾地区表层土壤中As元素为研究对象,采集了7 327个土壤样品,400个岩石样品,分析As、K2O、Na2O、CaO、MgO、SiO2、Al2O3、TFe2O3、Mn、Ti、pH和有机碳(SOC)等指标,探讨了土壤成土母岩、成土作用、土壤组成、pH和有机质等对表层土壤As元素的影响。结果表明:As元素平均质量分数为7.96×10-6,为中国土壤背景值0.80倍;风化作用对于As元素的次生富集起到极为重要的作用,明显强于成土母岩As元素背景的影响。Pearson相关分析和主成分分析表明:在土壤组成和土壤性质等因素中,含Al矿物(Al2O3)、含Fe矿物(TFe2O3)、含Si矿物(SiO2)和SOC,对土壤As的富集起到主导作用;pH 和含 Ca矿物(CaO)的作用较弱;而含K矿物(K2O)、含Na矿物(Na2O)和含Mg矿物(MgO)对As的次生富集作用可以忽略不计。 相似文献
2.
ICP-MS测定土壤中的As、Cr、Pb、Se、Cu和Zn 总被引:1,自引:0,他引:1
本文用电感耦合等离子质谱法(ICP-MS)测定了土壤的As、Cr、Pb、Se、Cu和Zn6种微量元素的质量分数,以In作为内标进行基体效应的补偿,方法快速灵敏,回收率为92.4%~106.8%,相对标准偏差小于5.0%,结果达到国家标准要求。 相似文献
3.
两类矿物前体对As(Ⅲ)阴离子吸附机制的实验研究 总被引:2,自引:1,他引:2
通过两类矿物前体对A s(Ⅲ)阴离子的吸附反应的实验研究发现:这两类矿物前体在吸附反应过程中pH值均发生了明显变化,它们对A s(Ⅲ)的吸附均属于化学吸附。M g-A l-LDO从环境中获取阴离子以恢复重建LDH的结晶结构,并释放OH-使溶液pH升高;F e(OH)3凝胶改变了A s(Ⅲ)的络合配位数,同时产生H+离子,使溶液pH降低;M g-F e-LDO兼有二者的特点。在室温条件下,M g-A l-LDO和M g-F e-LDO对A s(Ⅲ)的吸附容量分别为83.2×1-0 3和87.45×1-0 3,而F e(OH)3凝胶为204.9×1-0 3。矿物前体对溶液中阴离子污染物的吸附能力大大高于对应的矿物,主要原因是它们的吸附机理不同,前者为化学吸附,而后者以物理吸附为主。 相似文献
4.
5.
6.
8.
9.
根据石家庄污灌区土壤的平面和垂直剖面土壤样品中As含量数据,制作了As分布图,总结当地As元素分布特征。结果表明:石家庄污灌区内表层和深层土壤中As的分布都受到强烈的外源影响:表层As的分布受到污水排放源位置的控制,深层土壤也受纳了从上层向下迁移的外源As,在表层和深层都形成了若干高值区,各高值区具有独立成因;垂向分布上As主要富集在深部粘土层。 相似文献
10.
不同氧化度碱性水钠锰矿氧化As(Ⅲ)和Cr(Ⅲ) 的动力学特性 总被引:1,自引:0,他引:1
用批量法研究了Mn平均氧化度分别为4.02、3.85和3.70的碱性水钠锰矿对As(Ⅲ)和Cr(Ⅲ)氧化的动力学特性。结果表明,碱性水钠锰矿氧化As(Ⅲ)和Cr(Ⅲ)先经历准一级动力学反应阶段,随后表观速率常数(kobs)逐渐减小至趋近零,达到反应平衡,kobs逐渐减小除了逆反应影响外,还与产物在矿物表面不断积累,钝化反应位点有关。初始反应阶段kobs随氧化度增加而增大,氧化As(Ⅲ)的kobs分别为: 0.095 1、0.039 6和0.007 1 min-1;氧化Cr(Ⅲ)的kobs分别为0.034 2、0.017 8和0.014 8 min-1。氧化As(Ⅲ)的初始反应阶段生成的Mn(Ⅱ)基本保留在矿物表面,对反应位点钝化大,使kobs减小速度快。而Cr(Ⅲ) 氧化初始阶段,Mn(Ⅱ)释放明显滞后于Cr(Ⅵ)释放,但随反应进行逐渐增加,与Cr(Ⅵ)释放量比值接近于反应计量比。故Cr(Ⅲ) 氧化生成Mn(Ⅱ)对位点的钝化远小于As(Ⅲ)氧化,其初始反应阶段后kobs减小速度较慢,且氧化度越高,保持一级动力学的初始反应阶段越长,kobs减小越慢。因此,水钠锰矿的Mn氧化度越高,氧化As(Ⅲ)和Cr(Ⅲ)的反应速率越快,As(Ⅲ)和Cr(Ⅲ)在碱性水钠锰矿表面氧化产物的释放行为是影响其反应动力学特性的重要因素。 相似文献