首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   226篇
  免费   18篇
  国内免费   30篇
测绘学   4篇
大气科学   7篇
地球物理   52篇
地质学   165篇
海洋学   32篇
综合类   5篇
自然地理   9篇
  2023年   3篇
  2022年   4篇
  2021年   2篇
  2020年   4篇
  2019年   10篇
  2018年   1篇
  2017年   5篇
  2016年   20篇
  2015年   6篇
  2014年   2篇
  2013年   17篇
  2012年   4篇
  2011年   10篇
  2010年   13篇
  2009年   26篇
  2008年   25篇
  2007年   29篇
  2006年   22篇
  2005年   21篇
  2004年   12篇
  2003年   6篇
  2002年   5篇
  2001年   9篇
  2000年   4篇
  1999年   2篇
  1998年   4篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1989年   1篇
  1986年   1篇
排序方式: 共有274条查询结果,搜索用时 15 毫秒
31.
When chromated copper arsenate (CCA)-treated wood is removed from service and turns into waste, the contents of Cu, Cr and As remain high due to the strong fixation of CCA in the wood. This high content of toxic compounds presents a disposal challenge. Incineration of CCA-treated waste wood is not allowed in Denmark; instead, the wood is to be land-filled until new methods for handling the wood are available. Since the amounts of CCA-treated wood being removed from service is expected to increase in the years to come, the need for finding alternative handling methods is very relevant. In this study, the usefulness of Electrodialytic Remediation was demonstrated for handling of CCA-treated waste wood in pilot scale. The electrodialytic remediation method, which uses a low-level direct current (DC) as the cleaning agent, combines electrokinetic movement of ions in the wood matrix with the principles of electrodialysis. It has previously been shown that it is possible to remove Cu, Cr and As from CCA-treated wood using electrodialytic remediation in laboratory scale, but until now, the method had not been studied in large scale. The pilot-scale plant used in this study was designed to contain up to 2 m3 wood chips. Six remediation experiments were carried out. In these experiments, the process was up-scaled stepwise by increasing the distance between the electrodes from initially 60 cm to finally 150 cm. The remediation time was varied between 11 and 21 days, and phosphoric acid and/or oxalic acid was used to facilitate the desorption of CCA from the wood. In the most successful of the experiments carried out, the concentration of CCA in the wood was reduced by up to 82% for Cr, 88% for Cu and at least 96% for As.  相似文献   
32.
In the Bengal Delta Plain (BDP) the primary arsenic sourcing appears to be different from the global scenario. Here, the Terminal Pleistocene–Holocene depositional platform, the interactive early Holocene depositional morphology with fluvio-estuarine and marine incursions played a crucial role for arsenic sourcing and enrichment. The lenticular silt-fine sand layer between anoxic clay beds favoured entrapment of dissolved organic carbon with decayed phyto-planktons debris. The Terminal Pleistocene–Holocene transgression and regression processes may have acted as major events in the BDP. Interestingly, at the end of the last glacial maxima, the Pleistocene delta had undergone block movements, wherein some parts of the platform were raised above the level of Holocene deposition. Those blocks were found to be free from arsenic in the groundwater. The sea, during re-emerging inundation (10–7 ka BP), has witnessed a monsoon-induced environment in the BDP with the resultant oscillation of sea level leading to higher upsurge towards the north. This might have resulted in the marine incursion and inundation in pre-existing land depressions. Meanwhile arsenic entrapments through marine incursion as well as enrichment in the presence of organic carbon/DOC and/or Fe/Mn/Al catalytic agents could have developed into localised redox traps. It may be of relevance that due to the repetitive transgressive–regressive phases in Holocene, resulting in periodic exposure and weathering of iron-bearing minerals and consequent iron enrichment in the aquifer system. The iron, thus present, had free charge to host arsenic as a sink. It appears that arsenic, wherever found, would likely be of atypical localised exhaustible phenomenon, both in horizontal and vertical context. It also rationalises the cause of the absence of arsenic in the other nearby Pleistocene platform, which has not come across Holocene interaction and marine incursion, as to the likely limiting condition for the search for arsenic in the BDP or beyond.  相似文献   
33.
This study concerns the mineralogy of the tailings of a former Ag–Pb mine (Auzelles district, France) and the contribution of the waste materials to the heavy metal dissemination in the environment. Accumulation of metals in fish flesh was reported and this pollution is attributed to past mining activities. Tailings were studied to establish the major transfer schemes of As and Pb in order to understand their mobility that leads to contamination of a whole ecosystem. Mineralogical investigation, solubility and compliance tests were performed to assess the stability of the metal-bearing phases. Among the various metallic elements measured, As and Pb show the highest bulk concentrations (up to 0.7% and 6.3% respectively) especially for samples presenting near neutral pH values. According to X-ray diffraction (XRD), Scanning Electron Microscopy (SEM-EDX), Electron Probe Micro-Analysis (EPMA) and micro-Raman spectrometry (μRS), tailings mineralogy still contain primary minerals such as sulfides (e.g., galena, pyrite), phosphates (monazite, apatite) and/or carbonates (e.g., (hydro-)cerussite, dolomite, siderite). Sulfates (e.g., anglesite, lanarkite, plumbojarosite and beudantite) are the main secondary metal-bearing phases with other interesting phases accounting for metals mobility such as Fe and/or Pb and/or Mn oxides (e.g., lepidocrocite, goethite -up to 15 wt% of Pb was measured-, plumboferrite-type phase, mimetite). The lowest Pb solubilities were obtained at pH 8–9 and at a larger range than for As for which the lowest solubilities are reached around pH 6–7. At this minimum solubility pH value, Pb concentrations released still over exceed the National Environmental Quality Standards (NEQS), whatever the samples. The highest solubility is reached at pH 2 for both elements whatever the considered sample. This represents up to 51% of total Pb and up to 46% of total As remobilized and concentrations exceeding the NEQS. As and Pb released mainly depends on the Fe/Mn oxides (e.g., goethite, lepidocrocite) and carbonates (cerussite) which are the less stable phases. Compliance tests also show that Pb concentrations released are higher than the upper limit for hazardous waste landfills. Determination of the mineralogy allows understanding both the solubility and leaching test experiments results, as well as to forecast the impact of the residues on the water quality at a mid-term scale.  相似文献   
34.
The use of multiple partially penetrating wells (MPPW) during aquifer storage and recovery (ASR) in brackish aquifers can significantly improve the recovery efficiency (RE) of unmixed injected water. The water quality changes by reactive transport processes in a field MPPW-ASR system and their impact on RE were analyzed. The oxic freshwater injected in the deepest of four wells was continuously enriched with sodium (Na+) and other dominant cations from the brackish groundwater due to cation exchange by repeating cycles of ‘freshening’. During recovery periods, the breakthrough of Na+ was retarded in the deeper and central parts of the aquifer by ‘salinization’. Cation exchange can therefore either increase or decrease the RE of MPPW-ASR compared to the RE based on conservative Cl, depending on the maximum limits set for Na+, the aquifer’s cation exchange capacity, and the native groundwater and injected water composition. Dissolution of Fe and Mn-containing carbonates was stimulated by acidifying oxidation reactions, involving adsorbed Fe2+ and Mn2+ and pyrite in the pyrite-rich deeper aquifer sections. Fe2+ and Mn2+ remained mobile in anoxic water upon approaching the recovery proximal zone, where Fe2+ precipitated via MnO2 reduction, resulting in a dominating Mn2+ contamination. Recovery of Mn2+ and Fe2+ was counteracted by frequent injections of oxygen-rich water via the recovering well to form Fe and Mn-precipitates and increase sorption. The MPPW-ASR strategy exposes a much larger part of the injected water to the deeper geochemical units first, which may therefore control the mobilization of undesired elements during MPPW-ASR, rather than the average geochemical composition of the target aquifer.  相似文献   
35.
Twenty-six groundwater samples were collected from the Eastern Thessaly region and analysed by ICP-ES for these elements: Al, As, P, Pb, Zn, Mn, Fe, Cr, Sb, Cu, Na, Br, Cl, Si, Mg, Ag, Be, Bi, Dy, Er, Eu, Au, Ge, Ho, In, Ir, Os, Pt, Re, Rh, Ru, Lu, Hf, Hg, Tm, Zr and Nb. The objectives of the study were to assess the level of water contamination with respect to the EC and the USEPA health-based drinking water criteria. The geology of the studied area includes schists, amphibolites, marbles of Palaeozoic age, ophiolites, limestones of Triassic and Cretaceous age, Neogene and Quaternary deposits. The element ranges for groundwater samples are: Al 7–56 μg l−1, As 1–125 μg l−1, Br 6–60 μg l−1, Cl 500–25,000 μg l−1, Cr 1–6 μg l−1, Cu 1–15 μg l−1, Fe 10–352 μg l−1, Mg 2,940–40,100 μg l−1, Mn 0–8 μg l−1, Na 3,650–13,740 μg l−1, P 20–48 μg l−1, Pb 0–7 μg l−1, Sb 0–21 μg l−1, Si 3,310–13,240 μg l−1 and Zn 7–994 μg l−1. The results of groundwater analyses from the region of Eastern Thessaly showed elevated concentrations of As and Sb. Factor analysis explained 77.8% of the total variance of the data through five factors. Concentration of Br, Cl, Mg, Na and Si is directly related to the presence of saltwater in the aquifer, so grouping of these variables in factor 1 probably reflects the seawater intrusion. Al, As and Sb are known to form complexes in the environment, so grouping of these elements in factor 2 indicates their similar geochemical behaviour in the environment. The high negative loading of Mn in factor 2 indicates the presence of manganese oxides–hydroxides in the study area. Pb and Zn are associated together in sulphide mineralisation; so grouping of these elements in factor 3 reflects the sulphide mineralization paragenesis in the Melivoia area. P and Cu are associated together in phosphate fertilizers; so grouping of these variables in factor 4 could be related to agricultural practices. Cr, Fe, Mn and Mg are associated together in iron and manganese oxides–hydroxides and the weathering products of the olivine of the ultrabasic rocks; so grouping of these elements in factor 5 reflects the lithology of the area. There is a natural contamination of groundwaters with elevated concentrations of As and Sb due to the presence of the arsenopyrite and stibnite mineralisation in the Melivoia, Sotiritsa and Ano Polydendri areas. Contamination over the health-based drinking water guidelines given by EC and EPA has been investigated from nine sampling sites out of 26 of Eastern Thessaly region.  相似文献   
36.
The role of pH and pulp redox potential (EH) to control the flotation and depression of arsenopyrite has been investigated through studies on microflotation of arsenopyrite crystals and batch flotation of an arsenopyritic ore using isopropyl xanthate as collector. The transition between flotation and depression of arsenopyrite is established by the reversible potential of the xanthate/dixanthogen couple. Adsorption of arsenate ions on ferric hydroxide has been studied through electrokinetics to delineate mechanisms involved in the depression of arsenopyrite using oxidants. Chemical binding between arsenate species and ferric hydroxide sites on arsenopyrite is suggested as the mechanism responsible for depression of arsenopyrite. EH conditions are given for the flotation and depression of arsenopyite at various pH values for the arsenopyritic ore.  相似文献   
37.
The shallow alluvial aquifers of the delta plains and flood plains of Bangladesh, comprises about 70% of total land area are mostly affected by elevated concentrations of arsenic (As) in groundwater exposing a population of more than 35 million to As toxicity. Geochemical studies of shallow alluvial aquifer in the Meghna flood plain show that the uppermost yellowish grey sediment is low in As (1.03 mg/kg) compared to the lower dark grey to black sediment (5.24 mg/kg) rich in mica and organic matter. Sequential extraction data show that solid phase As bound to poorly crystalline and amorphous metal (Fe, Mn, Al)-oxyhydroxides is dominant in the grey to dark grey sediment and reaches its maximum level (3.05 mg/kg) in the mica rich layers. Amount of As bound to sulphides and organic matter also peaks in the dark grey to black sediment. Vertical distributions of major elements determined by X-ray fluorescence (XRF) show that iron (Fe2O3), aluminum (Al2O3) and manganese (MnO) follow the general trend of distribution of As in the sediments. Concentrations of As, Mn, Fe, HCO3 , SO4 2− and NO3 in groundwater reflect the redox status of the aquifer and are consistent with solid phase geochemistry. Mineralogical analysis by X-ray diffraction (XRD) and scanning electron microscopy (SEM) fitted with energy dispersive X-ray spectrometer (EDS) revealed dominance of crystalline iron oxides and hydroxides like magnetite, hematite and goethite in the oxidised yellowish grey sediment. Amorphous Fe-oxyhydroxides identified as grain coating in the mica and organic matter rich sediment suggests weathering of biotite is playing a critical role as the source of Fe(III)-oxyhydroxides which in turn act as sink for As. Presence of authigenic pyrite in the dark grey sediment indicates active reduction in the aquifer.  相似文献   
38.
Over a large area of the Bengal delta in West Bengal, India, arsenic distribution patterns in groundwater were studied. One hundred and ten boreholes at different target locations were made, subsurface sediments were logged and analysed, and arsenic values in sediments vis-à-vis groundwater were compared. The study elucidates the subsurface geology of the western part of Bengal delta and characterises the sediments that were intersected in different boreholes with contrasting values of arsenic in groundwater. It reveals an existence of multiple aquifers stacked over each other. Depending on the color and nature of aquifer-sands and their overlying clay beds six aquifer types (Type-1 to Type-6) are classified and described. Sediment-arsenic for all the varieties of aquifer sands are near similar but the groundwater-arsenic of these six aquifers varies widely. Type-2 and Type-5 aquifers host arsenic-contaminated groundwater whereas the other four aquifers are arsenic-free. Type-2 and Type-5 aquifers are capped by a grey to dark grey soft organic matter-rich clay unit which makes these aquifers semi-confined to leaky-confined. These contribute in releasing arsenic from the sediments. The results of this study are employed in a proposed georemedial measure against this hazardous toxic element.  相似文献   
39.
Geological and geochemical study has been carried out to investigate arsenic contamination in groundwater in Nawalparasi, the western Terai district of Nepal. The work carried out includes analyses of core sediments, provenance study by rare earth elements analyses, 14C dating, and water analyses. Results showed that distribution of the major and trace elements are not homogeneous in different grain size sediments. Geochemical characteristics and sediment assemblages of the arsenic contaminated (Nawalparasi) and uncontaminated (Bhairahawa) area have been compared. Geochemical compositions of sediments from both the areas are similar; however, water chemistry and sedimentary facies vary significantly. Extraction test of sediment samples showed significant leaching of arsenic and iron. Chemical reduction and contribution from organic matter could be a plausible explanation for the arsenic release in groundwater from the Terai sediments.  相似文献   
40.
高砷地下水研究的热点及发展趋势   总被引:4,自引:0,他引:4  
全球范围内广泛分布的高砷地下水给人们的健康造成了极大的威胁.高砷地下水的形成机理是一项世界性的科学问题.介绍了高砷地下水的分布特点、富集机理,阐明了溶解性有机物、地下水流动特征对高砷地下水形成的影响机制.现今的研究揭示了有机物和微生物协同作用下高砷地下水的形成过程,并且在高砷地下水的空间分布、时间变化特征以及人类活动对高砷地下水形成的影响等方面取得了一些创新性成果.这3方面的研究也逐渐成为近些年高砷地下水研究的热点.这些研究不仅丰富了砷迁移转化的理论成果,而且有助于开辟低砷水源,保障水资源的可持续利用,具有重要的理论和现实意义.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号