首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9849篇
  免费   1548篇
  国内免费   1571篇
测绘学   204篇
大气科学   942篇
地球物理   1968篇
地质学   4056篇
海洋学   1837篇
天文学   9篇
综合类   474篇
自然地理   3478篇
  2024年   67篇
  2023年   220篇
  2022年   478篇
  2021年   495篇
  2020年   439篇
  2019年   471篇
  2018年   419篇
  2017年   467篇
  2016年   457篇
  2015年   498篇
  2014年   628篇
  2013年   686篇
  2012年   615篇
  2011年   638篇
  2010年   536篇
  2009年   584篇
  2008年   623篇
  2007年   669篇
  2006年   611篇
  2005年   480篇
  2004年   454篇
  2003年   430篇
  2002年   282篇
  2001年   250篇
  2000年   256篇
  1999年   207篇
  1998年   145篇
  1997年   136篇
  1996年   133篇
  1995年   118篇
  1994年   114篇
  1993年   82篇
  1992年   75篇
  1991年   62篇
  1990年   48篇
  1989年   31篇
  1988年   19篇
  1987年   6篇
  1986年   8篇
  1985年   8篇
  1984年   4篇
  1983年   3篇
  1982年   2篇
  1981年   9篇
  1979年   3篇
  1977年   1篇
  1976年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
951.
应用MJO制作长江流域月降水预测的试验研究   总被引:1,自引:0,他引:1  
张礼平  张乐飞 《气象》2013,39(9):1217-1220
用MJO指数RMM1、RMM2、振幅 1—25日平均代替月平均,用上月月平均RMM1和RMM2、振幅构造为右场,下月长江流域降水场为左场,SVD分析两场的关联,借助最优化技术,在降水场预测距平与实况距平同号总站数最大意义下确定系数,建立估计公式,由右场时间系数估计左场时间系数,最后反演降水场。尽管多数的月第一模态相关并不显著,但实际预测效果较好。  相似文献   
952.
郑淋淋  孙建华 《大气科学》2013,37(4):891-904
对2007~2010 年暖季(6~9 月)发生在江淮和黄淮流域46 个对流天气过程的环流背景和地面特征进行了统计研究。根据整层可降水量小于或大于等于50 mm 将这些个例发生的环境分成干环境(10 个个例)和湿环境(36 个个例)。干环境下发生强对流的天气形势可以分为槽后型和副高边缘型,湿环境下的天气形势可分为槽前型、副高边缘型和槽后型,湿环境下有明显的暖湿区配合。湿环境下槽前型发生的概率最高,地面系统较为复杂,有静止锋、倒槽、冷锋和暖锋,而干环境下在本研究的个例中无槽前型发生。干、湿环境下副高边缘型的对流,从地面到500 hPa 都发生在副高后部的“S”流型的拐弯处,但部分湿环境个例低层有切变线。干环境下槽后型的发生概率较高,而湿环境下发生概率则相对较少。由这些研究表明,干、湿环境下强对流系统的触发和维持机制存在明显的差异。  相似文献   
953.
Inundation patterns in two of the largest savanna floodplains of South America were studied by analysis of the 37‐GHz polarization difference observed by the Scanning Multichannel Microwave Radiometer (Nimbus‐7 satellite). Flooded area was estimated at monthly intervals for January 1979 through to August 1987 using mixing models that account for the major landscape units with distinctive microwave emission characteristics. Results are presented separately for five subregions in each of the two floodplain regions to show the spatial as well as temporal variability in inundation patterns. The total area inundated during the 9 years varied between 2069 and 78 460 km2 in the Llanos de Moxos (also spelled as Mojos; median area, 23 383 km2) and 1278 and 105 454 km2 in the Llanos del Orinoco (median, 25 374 km2), not including the open‐water area of permanent lakes and river channels. The correlation between flooded area and river stage was used to extend the inundation records over a 30‐year period in the Moxos (1967–97) and a 58‐year period (1927–85) in the Orinoco. Interannual variability in inundation is greater in the Moxos than the Orinoco. Comparison of these data, however, with a previously published analysis of the Pantanal wetland shows that inundation patterns in these two floodplain regions are not as variable across years as they are in the Pantanal. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
954.
The Zhujiang (Pearl) River Delta is the rapid economic development region in China since the opening and reform door policy was carried out in 1978. Being the rapid development of industry and city, the impact on the aquatic environmental quality was significant. The pollution caused the water quality descended and the ecological system degraded, and also impeded the economic development. The characteristics and problems of the aquatic environment are: the capacity of aquatic environment is large but hasn’t been utilized rationally, the water quality is influenced by saline sea water and tide current, the main pollutants are organic matter and the pollution is going heavier, the concentration of pollutants change seasonally. The countermeasures of aquatic environmental protection are: carrying out the environmental functional regionalization and controlling the total amount of pollutant discharge, revising the industrial structure and making a rational industrial arrangement, raising the rate of waste water treatment and making a full assessment of the water conservancy project.  相似文献   
955.
Flooding on the German Rhine during the 20th century was tested for trends and assessed to identify causal mechanisms driving worsening of flooding. A review of previous research outlines the range of impacts due to climate change, land‐use shifts, and river regulation. Analysis of hydrologic data, especially of the long record at Cologne, documents statistically significant increases in both flood magnitudes and frequencies. Specific‐gauge analysis, which isolates the effects of channel modification, documents that 20th century river engineering has caused little of the observed increase in flooding on the German Rhine. Precipitation records from the Rhine basin confirm that flood magnification has been driven by upstream factors, including an increase in flood‐producing precipitation of roughly 25% during the past 100 years and increases in runoff yields. In addition, agricultural land‐use records suggest that flood magnification can be partially explained by 20th century trends documenting intensification and industrialization of German agriculture. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   
956.
Alpine glacial basins are a significant source and storage area for sediment exposed by glacial retreat. Recent research has indicated that short‐term storage and release of sediment in proglacial channels may control the pattern of suspended sediment transfer from these basins. Custom‐built continuously recording turbidimeters installed on a network of nine gauging sites were used to characterize spatial and temporal variability in suspended sediment transfer patterns for the entire proglacial area at Small River Glacier, British Columbia, Canada. Discharge and suspended sediment concentration were measured at 5 min intervals over the ablation season of 2000. Differences in suspended sediment transfer patterns were then extracted using multivariate statistics (principal component and cluster analysis). Results showed that each gauging station was dominated c. 80% of days by diurnal sediment transfer patterns and ‘low’ suspended sediment concentrations. ‘Irregular’ transfer patterns were generally associated with ‘high’ sediment concentrations during snowmelt and rainfall events, resulting in the transfer of up to 70% of the total seasonal suspended sediment load at some gauging stations. Suspended sediment enrichment of up to 600% from channel storage release and extrachannel inputs occurred between the glacial front and distal proglacial boundary. However, these patterns differed significantly between gauging stations as determined by the location of the gauging station within the catchment and meteorological conditions. Overall, the proglacial area was the source for up to 80% of the total suspended sediment yield transferred from the Small River Glacier basin. These results confirmed that sediment stored and released in the proglacial area, in particular from proglacial channels, was controlling suspended sediment transfer patterns. To characterize this control accurately requires multiple gauging stations with high frequency monitoring of suspended sediment concentration. Accurate characterization of this proglacial control on suspended sediment transfer may therefore aid interpretation of suspended sediment yield patterns from glacierized basins. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
957.
黄河三角洲农牧业生产潜力   总被引:6,自引:0,他引:6  
本文从对黄河三角洲的宜农地和宜牧地的分析入手,对该区农作物生产潜力、牧草及载畜量潜力进行了探讨。并针对目前农牧业生产水平和存在的问题,提出了相应的对策。  相似文献   
958.
1INTRODUCTIONThe quality of water is traditionally determined by col-lectingwatersamplesandanalyzingthesamplesin a lab-oratory. However, sampling is very much hard sledding,time-consuming, slow and expensive, and easily in thecontrol of weather conditions, and does not include allwater areas. Satellite estimates of water quality havefound widespread application. Remote sensing instru-ments have been applied in water quality monitoringwith varying success (DANA and RICHARD, 1999;RUDD…  相似文献   
959.
The Huanghe, the second largest river in China, is now under great pressure as a water resource. Using datasets of river water discharge, water consumption and regional precipitation for the past 50 years, we elucidate some connections between decreasing water discharges, global El Niño/Southern Oscillation (ENSO) events and anthropogenic impacts in the drainage basin. Global ENSO events, which directly affected the regional precipitation in the river basin, resulted in approximately 51% decrease in river water discharge to the sea. The degree of anthropogenic impacts on river water discharge is now as great as that of natural influences, accelerating the water losses in the hydrological cycle. The large dams and reservoirs regulated the water discharge and reduced the peak flows by storing the water in the flood season and releasing it in the dry season as needed for agricultural irrigation. Thus, as a result, large dams and reservoirs have shifted the seasonal distribution patterns of water discharge and water consumption and finally resulted in rapidly increasing water consumption. Meanwhile, the annual distribution pattern of water consumption also changed under the regulation of dams and reservoirs, indicating that the people living in the river basin consume the water more and more to suit actual agricultural schedule rather than depending upon natural pattern of annual precipitation. The combination of the increasing water consumption facilitated by the dams and reservoirs and the decreasing precipitation closely associated with the global ENSO events over the past half century has resulted in water scarcity in this world-famous river, as well as in a number of subsequent serious results for the river, delta and coastal ocean.  相似文献   
960.
Stream temperature is a complex function of energy inputs including solar radiation and latent and sensible heat transfer. In streams where groundwater inputs are significant, energy input through advection can also be an important control on stream temperature. For an individual stream reach, models of stream temperature can take advantage of direct measurement or estimation of these energy inputs for a given river channel environment. Understanding spatial patterns of stream temperature at a landscape scale requires predicting how this environment varies through space, and under different atmospheric conditions. At the landscape scale, air temperature is often used as a surrogate for the dominant controls on stream temperature. In this study we show that, in regions where groundwater inputs are key controls and the degree of groundwater input varies in space, air temperature alone is unlikely to explain within-landscape stream temperature patterns. We illustrate how a geologic template can offer insight into landscape-scale patterns of stream temperature and its predictability from air temperature relationships. We focus on variation in stream temperature within headwater streams within the McKenzie River basin in western Oregon. In this region, as in other areas of the Pacific Northwest, fish sensitivity to summer stream temperatures continues to be a pressing environmental issue. We show that, within the McKenzie, streams which are sourced from deeper groundwater reservoirs versus shallow subsurface flow systems have distinct summer temperature regimes. Groundwater streams are colder, less variable and less sensitive to air temperature variation. We use these results from the western Oregon Cascade hydroclimatic regime to illustrate a conceptual framework for developing regional-scale indicators of stream temperature variation that considers the underlying geologic controls on spatial variation, and the relative roles played by energy and water inputs. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号