首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   722篇
  免费   124篇
  国内免费   525篇
测绘学   1篇
地球物理   80篇
地质学   1252篇
海洋学   2篇
天文学   1篇
综合类   24篇
自然地理   11篇
  2024年   4篇
  2023年   17篇
  2022年   45篇
  2021年   38篇
  2020年   63篇
  2019年   67篇
  2018年   79篇
  2017年   57篇
  2016年   51篇
  2015年   63篇
  2014年   63篇
  2013年   123篇
  2012年   96篇
  2011年   39篇
  2010年   57篇
  2009年   71篇
  2008年   48篇
  2007年   59篇
  2006年   47篇
  2005年   40篇
  2004年   50篇
  2003年   33篇
  2002年   20篇
  2001年   12篇
  2000年   10篇
  1999年   22篇
  1998年   10篇
  1997年   18篇
  1996年   10篇
  1995年   12篇
  1994年   13篇
  1993年   6篇
  1992年   5篇
  1991年   6篇
  1990年   5篇
  1989年   5篇
  1988年   2篇
  1987年   3篇
  1986年   1篇
  1983年   1篇
排序方式: 共有1371条查询结果,搜索用时 15 毫秒
11.
Mafic granulite and pyroxenite xenoliths from Cenozoic alkaline basalts at Hannuoba, Hebei Province, North China have been selected for a systematic geochemical and Sr–Nd–Pb isotopic study, which provides a unique opportunity to explore nature of the lower crust and the interaction between the continental crust and lithospheric mantle beneath an Archean craton. The major, compatible and incompatible elements and radiogenic isotopes of these xenoliths suggest great chemical heterogeneity of the lower crust beneath the Hannuoba region. Petrological and geochemical evidences indicate a clear cumulate origin, and most likely, they are related to basaltic underplating in different geological episodes. However, the Sr–Nd–Pb isotopic compositions of the xenoliths reveal a profound enriched source signature (EM I) with some influence of EM II, which implies that some portion of pre-existing, old metasomatized subcontinental lithospheric mantle could have played an important role in their genesis. It is suggested that the interaction between continental crust and subcontinental mantle as manifested by basaltic underplating would be closely related to regional tectonic episodes and geodynamic processes in the deep part of subcontinental lithospheric mantle.  相似文献   
12.
Palaeomagnetic study, carried out in the Moscovian (~305 Ma) formation in the Edjeleh anticline, shows the existence of three magnetisation components. Two of them are probably Cenozoic and Permian remagnetisations. The third component determined by both well defined ChRMs and remagnetisation circles analysis passes the fold test. Because the folding started before or during the Stephano-Autunian, this third component is the primary magnetisation. Its palaeomagnetic pole (28.3°S, 58.9°E), close to other poles from the Saharan platform obtained from neighbouring periods but without palaeomagnetic tests, confirms the age of these last data. To cite this article: B. Bayou et al., C. R. Geoscience 334 (2002) 81–87.  相似文献   
13.
One of the main factors that affects the performance of MLP neural networks trained using the backpropagation algorithm in mineral-potential mapping isthe paucity of deposit relative to barren training patterns. To overcome this problem, random noise is added to the original training patterns in order to create additional synthetic deposit training data. Experiments on the effect of the number of deposits available for training in the Kalgoorlie Terrane orogenic gold province show that both the classification performance of a trained network and the quality of the resultant prospectivity map increasesignificantly with increased numbers of deposit patterns. Experiments are conducted to determine the optimum amount of noise using both uniform and normally distributed random noise. Through the addition of noise to the original deposit training data, the number of deposit training patterns is increased from approximately 50 to 1000. The percentage of correct classifications significantly improves for the independent test set as well as for deposit patterns in the test set. For example, using ±40% uniform random noise, the test-set classification performance increases from 67.9% and 68.0% to 72.8% and 77.1% (for test-set overall and test-set deposit patterns, respectively). Indices for the quality of the resultant prospectivity map, (i.e. D/A, D × (D/A), where D is the percentage of deposits and A is the percentage of the total area for the highest prospectivity map-class, and area under an ROC curve) also increase from 8.2, 105, 0.79 to 17.9, 226, 0.87, respectively. Increasing the size of the training-stop data set results in a further increase in classification performance to 73.5%, 77.4%, 14.7, 296, 0.87 for test-set overall and test-set deposit patterns, D/A, D × (D/A), and area under the ROC curve, respectively.  相似文献   
14.
Use of GIS layers, in which the cell values represent fuzzy membership variables, is an effective method of combining subjective geological knowledge with empirical data in a neural network approach to mineral-prospectivity mapping. In this study, multilayer perceptron (MLP), neural networks are used to combine up to 17 regional exploration variables to predict the potential for orogenic gold deposits in the form of prospectivity maps in the Archean Kalgoorlie Terrane of Western Australia. Two types of fuzzy membership layers are used. In the first type of layer, the statistical relationships between known gold deposits and variables in the GIS thematic layer are used to determine fuzzy membership values. For example, GIS layers depicting solid geology and rock-type combinations of categorical data at the nearest lithological boundary for each cell are converted to fuzzy membership layers representing favorable lithologies and favorable lithological boundaries, respectively. This type of fuzzy-membership input is a useful alternative to the 1-of-N coding used for categorical inputs, particularly if there are a large number of classes. Rheological contrast at lithological boundaries is modeled using a second type of fuzzy membership layer, in which the assignment of fuzzy membership value, although based on geological field data, is subjective. The methods used here could be applied to a large range of subjective data (e.g., favorability of tectonic environment, host stratigraphy, or reactivation along major faults) currently used in regional exploration programs, but which normally would not be included as inputs in an empirical neural network approach.  相似文献   
15.
The Bikou volcanic terrane is predominated by subalkaline tholeiitic lavas. Rock samples display lower initial ratios of Sr and Nd, 0.701248-0.704413 and 0.511080-0.512341 respectively. 207Pb and 208Pb are significantly enriched in the lavas. Most samples have positive εNd, which indicates that the magma was derived from EM-type mantle source, while a few samples with negative εNd indicate that there was contamination in the magma evolution. Magma differentiation is demonstrated by variations of LREE and LILE from depletion to enrichment. Additionally, normalized REE patterns and trace elements showed that lavas from the Bikou volcanic terrane have similar characteristics to those of basalts in arc settings caused by subduction and collision. Analyses showed that the Bikou volcanic terrane is a volcanic arc. New evidence proved that the Hengdan Group, north of the Bikou arc, is a turbidite terrane filling a forearc basin. Consequently, the Bikou volcanic terrane and the Hengdan turbidite terrane const  相似文献   
16.
17.
The electrical structure of the Slave craton   总被引:4,自引:0,他引:4  
The Slave craton in northwestern Canada, a relatively small Archean craton (600×400 km), is ideal as a natural laboratory for investigating the formation and evolution of Mesoarchean and Neoarchean sub-continental lithospheric mantle (SCLM). Excellent outcrop and the discovery of economic diamondiferous kimberlite pipes in the centre of the craton during the early 1990s have led to an unparalleled amount of geoscientific information becoming available.

Over the last 5 years deep-probing electromagnetic surveys were conducted on the Slave, using the natural-source magnetotelluric (MT) technique, as part of a variety of programs to study the craton and determine its regional-scale electrical structure. Two of the four types of surveys involved novel MT data acquisition; one through frozen lakes along ice roads during winter, and the second using ocean-bottom MT instrumentation deployed from float planes.

The primary initial objective of the MT surveys was to determine the geometry of the topography of the lithosphere–asthenosphere boundary (LAB) across the Slave craton. However, the MT responses revealed, completely serendipitously, a remarkable anomaly in electrical conductivity in the SCLM of the central Slave craton. This Central Slave Mantle Conductor (CSMC) anomaly is modelled as a localized region of low resistivity (10–15 Ω m) beginning at depths of 80–120 km and striking NE–SW. Where precisely located, it is spatially coincident with the Eocene-aged kimberlite field in the central part of the craton (the so-called “Corridor of Hope”), and also with a geochemically defined ultra-depleted harzburgitic layer interpreted as oceanic or arc-related lithosphere emplaced during early tectonism. The CSMC lies wholly within the NE–SW striking central zone defined by Grütter et al. [Grütter, H.S., Apter, D.B., Kong, J., 1999. Crust–mantle coupling; evidence from mantle-derived xenocrystic garnets. Contributed paper at: The 7th International Kimberlite Conference Proceeding, J.B. Dawson Volume, 1, 307–313] on the basis of garnet geochemistry (G10 vs. G9) populations.

Deep-probing MT data from the lake bottom instruments infer that the conductor has a total depth-integrated conductivity (conductance) of the order of 2000 Siemens, which, given an internal resistivity of 10–15 Ω m, implies a thickness of 20–30 km. Below the CSMC the electrical resistivity of the lithosphere increases by a factor of 3–5 to values of around 50 Ω m. This change occurs at depths consistent with the graphite–diamond transition, which is taken as consistent with a carbon interpretation for the CSMC.

Preliminary three-dimensional MT modelling supports the NE–SW striking geometry for the conductor, and also suggests a NW dip. This geometry is taken as implying that the tectonic processes that emplaced this geophysical–geochemical body are likely related to the subduction of a craton of unknown provenance from the SE (present-day coordinates) during 2630–2620 Ma. It suggests that the lithospheric stacking model of Helmstaedt and Schulze [Helmstaedt, H.H., Schulze, D.J., 1989. Southern African kimberlites and their mantle sample: implications for Archean tectonics and lithosphere evolution. In Ross, J. (Ed.), Kimberlites and Related Rocks, Vol. 1: Their Composition, Occurrence, Origin, and Emplacement. Geological Society of Australia Special Publication, vol. 14, 358–368] is likely correct for the formation of the Slave's current SCLM.  相似文献   

18.
Mafic high-pressure granulite, eclogite and pyroxenite xenoliths have been collected from a Mesozoic volcaniclastic diatreme in Xinyang, near south margin of the Sino-Korean Craton (SKC). The high-pressure granulite xenoliths are mainly composed of fine-grained granoblasts of Grt+Cpx+Pl+Hbl±Kfs±Q±Ilm with relict porphyritic mineral assemblage of Grt+Cpx±Pl±Rt. PT estimation indicates that the granoblastic assemblage crystallized at 765–890 °C and 1.25–1.59 GPa, corresponding to crustal depths of ca. 41–52 km with a geotherm of 75–80 mW/m2. Calculated seismic velocities (Vp) of high-pressure granulites range from 7.04 to 7.56 km/s and densities (D) from 3.05 to 3.30 g/cm3. These high-pressure granulite xenoliths have different petrographic and geochemical features from the Archean mafic granulites. Elevated geotherm and petrographic evidence imply that the lithosphere of this craton was thermally disturbed in the Mesozoic prior to eruption of the host diatreme. These samples have sub-alkaline basaltic compositions, equivalent to olivine– and quartz–tholeiite. REE patterns are flat to variably LREE-enriched (LaN/YbN=0.98–9.47) without Eu anomaly (Eu/Eu*=0.95–1.11). They possess 48–127 ppm Ni and 2–20 ppm Nb with Nb/U and La/Nb ratios of 13–54 and 0.93–4.75, respectively, suggesting that these high-pressure granulites may be products of mantle-derived magma underplated and contaminated at the base of the lower crust. This study also implies that up to 10 km Mesozoic lowermost crust was delaminated prior to eruption of the Cenozoic basalts on the craton.  相似文献   
19.
Myra Keep   《Tectonophysics》2003,375(1-4):37
Structural vergence within the Western Subprovince of the Lachlan Fold Belt is towards the hinterland rather than the foreland, in contrast to many well-known orogenic belts. High angle-reverse faults and upright folds verge eastwards, away from the Australian craton, towards the inferred centre of orogenic and magmatic activity. We designed a series of analogue models to test the anomalous vergence in the western Lachlan Fold Belt, particularly the interaction of a stable Australian craton with Tasman Line geometry, interacting with weaker oceanic or transitional lithospheric material. We found consistently that vergence direction in the models was towards the hinterland, not the foreland, as in the western Lachlan Fold Belt, irrespective of the way the model was deformed. Strength gradients between the oceanic and cratonic lithosphere control the deformation patterns. An important result of the models is that they demonstrate that fold belts with different vergences can be generated without the requirement of subducting oceanic lithosphere.  相似文献   
20.
Establishing relative and absolute time frameworks for the sedimentary, magmatic, tectonic and gold mineralisation events in the Norseman-Wiluna Belt of the Archean Yilgarn Craton of Western Australia, has long been the main aim of research efforts. Recently published constraints on the timing of sedimentation and absolute granite ages have emphasized the shortcomings of the established rationale used for interpreting the timing of deformation events. In this paper the assumptions underlying this rationale are scrutinized, and it is shown that they are the source of significant misinterpretations. A revised time chart for the deformation events of the belt is established. The first shortening phase to affect the belt, D1, was preceded by an extensional event D1e and accompanied by a change from volcanic-dominated to plutonic-dominated magmatism at approximately 2685–2675 Ma. Later extension (D2e) controlled deposition of the ca 2655 Ma Kurrawang Sequence and was followed by D2, a major shortening event, which folded this sequence. D2 must therefore have started after 2655 Ma—at least 20 Ma later than previously thought and after the voluminous 2670–2655 Ma high-Ca granite intrusion. Younger transcurrent deformation, D3–D4, waned at around 2630 Ma, suggesting that the crustal shortening deformation cycle D2–D4 lasted approximately 20–30 Ma, contemporaneous with low-volume 2650–2630 Ma low-Ca granites and alkaline intrusions. Time constraints on gold deposits suggest a late mineralisation event between 2640–2630 Ma. Thus, D2–D4 deformation cycle and late felsic magmatism define a 20–30 Ma long tectonothermal event, which culminated with gold mineralisation. The finding that D2 folding took place after voluminous high-Ca granite intrusion led to research into the role of competent bodies during folding by means of numerical models. Results suggest that buoyancy-driven doming of pre-tectonic competent bodies trigger growth of antiforms, whereas non-buoyant, competent granite bodies trigger growth of synforms. The conspicuous presence of pre-folding granites in the cores of anticlines may be a result from active buoyancy doming during folding.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号