首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   580篇
  免费   113篇
  国内免费   284篇
测绘学   40篇
大气科学   4篇
地球物理   111篇
地质学   779篇
海洋学   12篇
综合类   9篇
自然地理   22篇
  2024年   6篇
  2023年   12篇
  2022年   15篇
  2021年   20篇
  2020年   26篇
  2019年   31篇
  2018年   33篇
  2017年   29篇
  2016年   28篇
  2015年   34篇
  2014年   40篇
  2013年   52篇
  2012年   54篇
  2011年   28篇
  2010年   27篇
  2009年   53篇
  2008年   45篇
  2007年   59篇
  2006年   63篇
  2005年   54篇
  2004年   57篇
  2003年   33篇
  2002年   24篇
  2001年   30篇
  2000年   21篇
  1999年   17篇
  1998年   18篇
  1997年   13篇
  1996年   16篇
  1995年   9篇
  1994年   7篇
  1993年   9篇
  1992年   5篇
  1991年   1篇
  1990年   2篇
  1989年   1篇
  1987年   2篇
  1983年   2篇
  1954年   1篇
排序方式: 共有977条查询结果,搜索用时 15 毫秒
11.
A Cordilleran model for the evolution of Avalonia   总被引:2,自引:0,他引:2  
Striking similarities between the late Mesoproterozoic–Early Paleozoic record of Avalonia and the Late Paleozoic–Cenozoic history of western North America suggest that the North American Cordillera provides a modern analogue for the evolution of Avalonia and other peri-Gondwanan terranes during the late Precambrian. Thus: (1) The evolution of primitive Avalonian arcs (proto-Avalonia) at 1.2–1.0 Ga coincides with the amalgamation of Rodinia, just as the evolution of primitive Cordilleran arcs in Panthalassa coincided with the Late Paleozoic amalgamation of Pangea. (2) The development of mature oceanic arcs at 750–650 Ma (early Avalonian magmatism), their accretion to Gondwana at ca. 650 Ma, and continental margin arc development at 635–570 Ma (main Avalonian magmatism) followed the breakup of Rodinia at ca. 755 Ma in the same way that the accretion of mature Cordilleran arcs to western North America and the development of the main phase of Cordilleran arc magmatism followed the Early Mesozoic breakup of Pangea. (3) In the absence of evidence for continental collision, the diachronous termination of subduction and its transition to an intracontinental wrench regime at 590–540 Ma is interpreted to record ridge–trench collision in the same way that North America's collision with the East Pacific Rise in the Oligocene led to the diachronous initiation of a transform margin. (4) The separation of Avalonia from Gondwana in the Early Ordovician resembles that brought about in Baja California by the Pliocene propagation of the East Pacific Rise into the continental margin. (5) The Late Ordovician–Early Silurian sinistral accretion of Avalonia to eastern Laurentia emulates the Cenozoic dispersal of Cordilleran terranes and may mimic the paths of future terranes transferred to the Pacific plate.This close similarity in tectonothermal histories suggests that a geodynamic coupling like that linking the evolution of the Cordillera with the assembly and breakup of Pangea, may have existed between Avalonia and the late Precambrian supercontinent Rodinia. Hence, the North American Cordillera is considered to provide an actualistic model for the evolution of Avalonia and other peri-Gondwanan terranes, the histories of which afford a proxy record of supercontinent assembly and breakup in the late Precambrian.  相似文献   
12.
Lithoprobe and industry seismic profiles have furnished evidence of major zones of easterly dipping Grenville deformed crust extending southwest from exposed Grenville rocks north of Lake Ontario. Additional constraints on subsurface structure limited to the postulated Clarendon–Linden fault system south of Lake Ontario are provided by five east–west reflection lines recorded in 1976. Spatial correlations between seismic structure and magnetic anomalies are described from both Lake Ontario and the newly reprocessed New York lines.In the Paleozoic to Precambrian upper crust, the New York seismic sections show: (1) An easterly thickening wedge of subhorizontal Paleozoic strata unconformably overlying a Precambrian basement whose surface has an apparent regional easterly dip of 1–2°. Minor apparent normal offsets, possibly on the order of tens of meters, occur within the Paleozoic section. The generally poorly reflective unconformity may be locally characterized by topographic relief on the order of 100 m; (2) Apparent local displacement on the order of 90 m at the level of the Black River Group diminishes upward to little or no apparent offset of Queenston Shale; (3) Within the limited seismic sections, there appears to be no evidence that the complete upper crustal section is vertically or subvertically offset; (4) Dipping structure in the Paleozoic strata (15° to 35°) resembles some underlying Precambrian basement elements; (5) The surface continuity of inferred faults constituting the Clarendon–Linden system is not strongly supported by the seismic data.Beneath the Paleozoic strata, the seismic sections show both linear and arcuate reflector geometry with easterly apparent dips of 15° to 35° similar to the deep structures imaged on seismic lines from nearby Lake Ontario and on Lithoprobe lines to the north. The similarity supports an extension of easterly dipping Central Metasedimentary Belt structures of the Grenville orogen from southern Ontario to beneath western New York State.From a comparison of the magnetic and gravity fields with the New York seismic sections, we suggest: (1) The largely nonmagnetic Paleozoic strata appear to contribute negligibly to magnetic anomalies. Seismically imaged fractures in the New York Paleozoic strata appear to lie mainly west of a positive gravity anomaly. The relationship between magnetic and gravity anomalies and the changes in the geometry of interpreted Precambrian structures remains enigmatic; (2) North to northeast trending curvilinear magnetic and gravity anomalies parallel, but are not restricted to the principal trend of the postulated Clarendon–Linden fault system. Paleozoic fractures of the Clarendon–Linden system may partly overlie a southward extension of the Composite Arc Belt boundary zone.  相似文献   
13.
As the core block of the East Gondwana Land, the East Antarctic Shield was traditionally thought, before 1992, as an amalgamation of a number of Archaean-Paleoproterozoic nuclei, be-ing welded by Grenville aged mobile belts during 1400—900 Ma, while the …  相似文献   
14.
Establishing relative and absolute time frameworks for the sedimentary, magmatic, tectonic and gold mineralisation events in the Norseman-Wiluna Belt of the Archean Yilgarn Craton of Western Australia, has long been the main aim of research efforts. Recently published constraints on the timing of sedimentation and absolute granite ages have emphasized the shortcomings of the established rationale used for interpreting the timing of deformation events. In this paper the assumptions underlying this rationale are scrutinized, and it is shown that they are the source of significant misinterpretations. A revised time chart for the deformation events of the belt is established. The first shortening phase to affect the belt, D1, was preceded by an extensional event D1e and accompanied by a change from volcanic-dominated to plutonic-dominated magmatism at approximately 2685–2675 Ma. Later extension (D2e) controlled deposition of the ca 2655 Ma Kurrawang Sequence and was followed by D2, a major shortening event, which folded this sequence. D2 must therefore have started after 2655 Ma—at least 20 Ma later than previously thought and after the voluminous 2670–2655 Ma high-Ca granite intrusion. Younger transcurrent deformation, D3–D4, waned at around 2630 Ma, suggesting that the crustal shortening deformation cycle D2–D4 lasted approximately 20–30 Ma, contemporaneous with low-volume 2650–2630 Ma low-Ca granites and alkaline intrusions. Time constraints on gold deposits suggest a late mineralisation event between 2640–2630 Ma. Thus, D2–D4 deformation cycle and late felsic magmatism define a 20–30 Ma long tectonothermal event, which culminated with gold mineralisation. The finding that D2 folding took place after voluminous high-Ca granite intrusion led to research into the role of competent bodies during folding by means of numerical models. Results suggest that buoyancy-driven doming of pre-tectonic competent bodies trigger growth of antiforms, whereas non-buoyant, competent granite bodies trigger growth of synforms. The conspicuous presence of pre-folding granites in the cores of anticlines may be a result from active buoyancy doming during folding.  相似文献   
15.
The sedimentology of the Northwestern Sudan consists of lower, middle and upper cycles. The lower and upper cycles are composed of intercalated fluvial and shallow marine facies, whereas the middle cycle consists entirely of fluvial and glaciofluvial facies. The petrographic analysis shows that the lower and upper cydes consist of quartz and lithic arenite sandstones, whereas the middle cycle consists of arkosic and lithic arenite sandstones. The lower and upper cycle sandstones reflect derivation mainly from recycled orogens with minor contribution from craton interior provenances. However, the middle cycle sandstones indicate derivation from basement uplift, transitional and mainly recycled orogens provenances.  相似文献   
16.
造山带弧形构造——西昆仑—帕米尔弧及其预测   总被引:16,自引:6,他引:16       下载免费PDF全文
曲国胜 Caner.  J 《地质科学》1996,31(4):313-326
对比利牛斯等造山带典型弧形构造的分析表明,弧形构造是造山带尤其是板内碰撞造山带的普遍特征,可分为挤压逆冲-推覆主动型构造和推覆-滑覆被动型弧形构造。西昆仑—帕米尔是与比利牛斯Basque弧在空间形态、运动学及动力学特征等方面一致的挤压逆冲-推覆主动型弧形构造,推测该弧中部存在一巨大的底部低角度逆掩断层并由根部带向北延伸达100多公里,康西瓦断裂(基底缝合带)可能是主根部逆冲断层带。  相似文献   
17.
Garnet-spinel peridotites form small, isolated, variably retrogressed bodies within the low-pressure high-temperature gneisses and migmatites of the Variscan basement of the Schwarzwald, southwest Germany. Detailed mineralogical and textural studies as well as geothermobarometric calculations on samples from three occurrences are presented. Two of the garnet-spinel peridotites have equilibrated at 680–770°C, 1.4–1.8 GPa within the garnet-spinel peridotite stability field, one of the samples having experienced an earlier stage within the spinel peridotite stability field (790°C, <1.8 GPa). The third sample, with only garnet and spinel preserved, probably equilibrated within the garnet peridotite stability field at higher pressures. These findings are in line with the distinction of two groups of ultramafic garnet-bearing high-pressure rocks with different equilibration conditions within the Schwarzwald (670–740°C, 1.4–1.8 GPa and 740–850°C, 3.2–4.3 GPa) which has previously been established (Kalt et al. 1995). The equilibration conditions of 670–770°C and 1.4–1.8 GPa for garnet-spinel peridotites from the Central Schwarzwald Gneiss Complex (CSGC) are similar to those for eclogites of the Schwarzwald and also correspond quite well to those for garnet-spinel peridotites from the Moldanubian zone of the Vosges mountains and of ecologites from the Moldanubian s.str. of the Bohemian Massif.  相似文献   
18.
大陆层控构造论盆-山系与造山带成因及演化新模式   总被引:1,自引:0,他引:1  
大陆构造以受中地壳塑性层控制的盆-山系和冲叠造山带厚皮构造为主要构造类型,而与中生代以来才出现的受软流层控制的大洋岩石圈板块构造截然不同。由上地壳正断层上盘断陷盆地和下盘断隆山所组成的盆-山系,与地球自转速度逐渐变慢派生不同性质水平力和重力的共同作用有关。当地球自转速度突然变化时,将派生强烈的侧压力,使升降幅度较大、具有侧向应变空间的断陷盆地与断隆山之间的上地壳发生冲叠运动,盆-山系由此演变成冲叠造山带。后者对前者存在着严格的继承关系,服从于“升降-冲叠律”。中生代以来的盆-山系和冲叠造山带有的是板块活动产物  相似文献   
19.
矿物材料合成的直流弧光法   总被引:1,自引:0,他引:1  
阐述了Ar+H2+CH4气体体系中直流弧光放电过程,及其在金刚石膜等矿物材料合成中的应用。  相似文献   
20.
The basalts crop out widely in the eastern part of late Proterozoic Jiangnan orogen. In terms of their petrographical and geochemical characteristics, they can be divided into two distinct types: low- and high-Ti. basalts. They crystallized from the magmas derived from the depleted upper mantle differing in partial melting degree. Project supported by the National Natural Science Foundation of China.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号