首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   923篇
  免费   162篇
  国内免费   198篇
测绘学   96篇
大气科学   193篇
地球物理   292篇
地质学   228篇
海洋学   234篇
天文学   9篇
综合类   46篇
自然地理   185篇
  2024年   9篇
  2023年   23篇
  2022年   28篇
  2021年   32篇
  2020年   46篇
  2019年   41篇
  2018年   36篇
  2017年   31篇
  2016年   39篇
  2015年   46篇
  2014年   48篇
  2013年   91篇
  2012年   57篇
  2011年   49篇
  2010年   40篇
  2009年   45篇
  2008年   57篇
  2007年   62篇
  2006年   60篇
  2005年   51篇
  2004年   49篇
  2003年   42篇
  2002年   29篇
  2001年   30篇
  2000年   27篇
  1999年   30篇
  1998年   27篇
  1997年   22篇
  1996年   33篇
  1995年   11篇
  1994年   22篇
  1993年   16篇
  1992年   12篇
  1991年   7篇
  1990年   6篇
  1989年   9篇
  1988年   9篇
  1987年   5篇
  1986年   1篇
  1984年   1篇
  1979年   1篇
  1978年   2篇
  1977年   1篇
排序方式: 共有1283条查询结果,搜索用时 46 毫秒
101.
ABSTRACT

The accurate representation of the Earth’s surface plays a vital role in soil erosion modelling. Topography is parameterized in the Universal Soil Loss Equation (USLE) and Revised USLE (RUSLE) by the topographic (LS) factor. For slope gradients of < 20%, soil loss values are similar for both models, but when the gradient is increased, RUSLE estimates are only half of those of USLE. The study aims to assess the validity of this statement for complex hillslope profiles. To that end, both models were applied at eight diverse mountainous sub-watersheds. The USLE and RUSLE indices were estimated utilizing the SEAGIS model and a European dataset, respectively. LS factors were in a 3:1 ratio (i.e. USLE:RUSLE) considering the entire basin area. For areas with slopes <20%, gross erosion estimates of both models converged. Sites of strong relief (>20%) USLE yielded significantly higher values than RUSLE.  相似文献   
102.
Dynamic mechanisms controlling the topography of Longmenshan area   总被引:1,自引:0,他引:1  
The Longmenshan fault, which defines the eastern edge of the Tibetan Plateau, is one of the steepest margins of the plateau with a sharp elevation drop of about 4 km over a distance less than 100 km across the Longmenshan fault. The mechanism which is responsible for controlling and maintaining the elevation difference is highly debated. Using multiple observations including seismic velocity model, Moho depth, effective elastic thickness of the lithosphere, we conducted a quantitative study for elucidating the contributions from crust and lithospheric mantle by an integrated analysis of lithospheric isostasy and flexure. It is shown that the topography of the Longmenshan fault is supported by both lithospheric isostasy and flexure statically, and lower crustal channel flow and mantle convection dynamically. Different mechanisms have different weights for contribution to the topography of the Songpan-Ganzi block and the Sichuan Basin. The static and dynamic support contribute roughly the same to the topographic difference of ~4 km between the two sides of the Longmenshan fault. The static topographic difference of ~2 km is mainly resulted from the lithospheric isostasy, while the dynamic one of ~2 km is contributed by the uprising of the accumulated material in the lower crust beneath the Songpan-Ganzi block and the downward drag force caused by the upper mantle convection under the Sichuan Basin. It is thus suggested that the lower crustal flow and upper mantle convection are dynamic forces which should be taken into account in the studies on the dynamics in the Longmenshan and surrounding regions.  相似文献   
103.
Relationships between riverbed morphology, concavity, rock type and rock uplift rate are examined to independently unravel the contribution of along-strike variations in lithology and rates of vertical deformation to the topographic relief of the Oregon coastal mountains. Lithologic control on river profile form is reflected by convexities and knickpoints in a number of longitudinal profiles and by general trends of concavity as a function of lithology. Volcanic and sedimentary rocks are the principal rock types underlying the northern Oregon Coast Ranges (between 46°30′ and 45°N) where mixed bedrock–alluvial channels dominate. Average concavity, θ, is 0·57 in this region. In the alluviated central Oregon Coast Ranges (between 45° and 44°N) values of concavity are, on average, the highest (θ = 0·82). South of 44°N, however, bedrock channels are common and θ = 0·73. Mixed bedrock–alluvial channels characterize rivers in the Klamath Mountains (from 43°N south; θ = 0·64). Rock uplift rates of ≥0·5 mm a−1, mixed bedrock–alluvial channels, and concavities of 0·53–0·70 occur within the northernmost Coast Ranges and Klamath Mountains. For rivers flowing over volcanic rocks θ = 0·53, and θ = 0·72 for reaches crossing sedimentary rocks. Whereas channel type and concavity generally co-vary with lithology along much of the range, rivers between 44·5° and 43°N do not follow these trends. Concavities are generally greater than 0·70, alluvial channels are common, and river profiles lack knickpoints between 44·5° and 44°N, despite the fact that lithology is arguably invariant. Moreover, rock uplift rates in this region vary from low, ≤0·5 mm a−1, to subsidence (<0 mm a−1). These observations are consistent with models of transient river response to a decrease in uplift rate. Conversely, the rivers between 44° and 43°N have similar concavities and flow on the same mapped bedrock unit as the central region, but have bedrock channels and irregular longitudinal profiles, suggesting the river profiles reflect a transient response to an increase in uplift rate. If changes in rock uplift rate explain the differences in river profile form and morphology, it is unlikely that rock uplift and erosion are in steady state in the Oregon coastal mountains. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
104.
An investigation has been conducted to identify the key parameters that are likely to scale laboratory sediment deposits to the field scale. Two types of bed formation were examined: one where sediment is manually placed and screeded and the second where sediment is fed into a running flume. This later technique created deposits through sequential cycles of sediment transport and deposition. Detailed bed surface topography measurements have been made over a screeded bed and three fed beds. In addition, bulk subsurface porosity and hydraulic conductivity have been measured. By comparing the four beds, results revealed that certain physical properties of the screeded bed were clearly different from those of the fed beds. The screeded bed had a random organization of grains on both the surface and within the subsurface. The fed beds exhibited greater surface and subsurface organization and complexity, and had a number of properties that closely resembled those found for water‐worked gravel beds. The surfaces were water‐worked and armoured and there was preferential particle orientation and direction of imbrication in the subsurface. This suggested that fed beds are able to simulate, in a simplified manner, both the surface and subsurface properties of established gravel‐bed river deposits. The near‐bed flow properties were also compared. It revealed that the use of a screeded bed will typically cause an underestimation in the degree of temporal variability in the flow. Furthermore, time‐averaged streamwise velocities were found to be randomly organized over the screeded bed but were organized into long streamwise flow structures over the fed beds. It clearly showed that caution should be taken when comparing velocity measurements over screeded beds with water‐worked beds, and that the formation of fed beds offers an improved way of investigating intragravel flow and sediment–water interface exchange processes in gravel‐bed rivers at a laboratory scale. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
105.
地形畸变对偶极-偶极电阻率测深拟断面图的影响   总被引:1,自引:3,他引:1       下载免费PDF全文
偶极-偶极剖面方法是一种非常流行的物探方法,但就地形对该方法的实质性影响及修正研究得比较少.我们就几种典型的地形畸变情况进行了正演计算,并绘制了拟断面图.通过对这些图形分析,可以看到在地形畸变处的拟断面图不能反映地下地质体的情况,且有效拟断面图是不连续的,需要分段处理,分级解释.  相似文献   
106.
The shelf-break acts as a separator between the coastal ocean and the open ocean. Circulation (particularly deep near-bottom flow) is restricted from crossing the bathymetry. Eddies become elongated in the region of the shelf-break restricting exchange. An estimate of the horizontal eddy diffusivity over the shelf-break of less than 10m2s-1 is found from a numerical model. Various mechanisms are responsible for the weak cross-isobath flow that does occur. One is the increase of the Rossby number over small-scale topography such as submarine canyons. Along-shore flow (in the direction opposite to Kelvin wave propagation) generates upwelling through submarine canyons. A review of upwelling through submarine canyons is given. The deep cross-shelf flow generated by the canyons is shown to be as significant as the wind-driven upwelling in some regions. Examples for the reduction of flow across the shelf-break and for upwelling through canyons are taken from the West Coast of Vancouver Island.  相似文献   
107.
Laura B.  Hebert  Michael  Gurnis 《Island Arc》2010,19(1):134-150
Using two-dimensional dynamic models of the Northern Izu–Bonin (NIB) subduction zone, we show that a particular localized low-viscosity (ηLV =  3.3 × 1019 − 4.0 × 1020 Pa s), low-density (Δρ ∼ −10 kg/m3 relative to ambient mantle) geometry within the wedge is required to match surface observations of topography, gravity, and geoid anomalies. The hydration structure resulting in this low-viscosity, low-density geometry develops due to fluid release into the wedge within a depth interval from 150 to 350 km and is consistent with results from coupled geochemical and geodynamic modeling of the NIB subduction system and from previous uncoupled models of the wedge beneath the Japan arcs. The source of the fluids can be either subducting lithospheric serpentinite or stable hydrous phases in the wedge such as serpentine or chlorite. On the basis of this modeling, predictions can be made as to the specific low-viscosity geometries associated with geophysical surface observables for other subduction zones based on regional subduction parameters such as subducting slab age.  相似文献   
108.
通过对地形体及其密度信息数字图像化,利用计算机仿真能较精确地计算出地形体在任意一点的重力场强度。在重力异常地形校正时,用各测点的实测数据减去相应测点的地形体重力场强度,即得到地形改正和中间层改正后的重力场强度。这样,重力异常校正中的地形改正和中间层改正可一并完成,既简化了校正的工作步骤,又提高了准确性。通过地形体实例,分别用数字图像仿真计算和积分精确计算其重力场强度,结果表明,二者计算结果十分相近。用数字图像仿真计算地形体重力场强度,误差较小,准确性较高,该方法完全适合重力异常地形校正。  相似文献   
109.
DGPS RTK技术在无验潮水下地形测量中的应用初探   总被引:5,自引:0,他引:5  
本文简要介绍了DGPS RTK技术的基本原理和作业流程,阐明了该技术在无验潮水下地形测量中的适用性,并以除六泾水文大断面的测量为例介绍了利用该技术进行工程实测的过程,通过对实测数据成果的分析,得出一些有益的结论。  相似文献   
110.
为开展琼州海峡跨海通道地壳稳定性评价,利用Sonar Beam S-150D侧扫声纳系统在琼州海峡海底开展了地形地貌调查,获得了琼州海峡跨海通道工程区的侧扫声纳影像。通过数据分析、图像判读,分析了地质灾害类型及其可能的危害。在琼州海峡海底发现软土、活动沙波、岸坡及活动构造等微地貌单元,跨海通道工程施工、运行阶段都将遭受相关地质灾害的危害。这些资料和分析为跨海通道工程地壳稳定性评价提供了基础资料,为工程规划线路优选、建设实施提供了技术支撑。研究表明侧扫声纳技术可应用于海底地壳稳定性调查与评价工作中。   相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号