首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   605篇
  免费   71篇
  国内免费   205篇
测绘学   1篇
大气科学   19篇
地球物理   78篇
地质学   681篇
海洋学   8篇
天文学   1篇
综合类   24篇
自然地理   69篇
  2024年   2篇
  2023年   11篇
  2022年   16篇
  2021年   23篇
  2020年   22篇
  2019年   22篇
  2018年   22篇
  2017年   30篇
  2016年   27篇
  2015年   19篇
  2014年   41篇
  2013年   49篇
  2012年   38篇
  2011年   24篇
  2010年   27篇
  2009年   37篇
  2008年   39篇
  2007年   37篇
  2006年   50篇
  2005年   28篇
  2004年   38篇
  2003年   27篇
  2002年   29篇
  2001年   20篇
  2000年   20篇
  1999年   27篇
  1998年   23篇
  1997年   17篇
  1996年   19篇
  1995年   21篇
  1994年   16篇
  1993年   12篇
  1992年   10篇
  1991年   7篇
  1990年   6篇
  1989年   4篇
  1988年   6篇
  1987年   5篇
  1985年   2篇
  1984年   1篇
  1983年   2篇
  1981年   1篇
  1980年   2篇
  1979年   1篇
  1978年   1篇
排序方式: 共有881条查询结果,搜索用时 15 毫秒
21.
The sedimentary infills of subglacially eroded bedrock troughs in the Alps are underexplored archives for the timing, extent and character of Pleistocene glaciations but may contain excellent records of the Quaternary landscape evolution over several glacial–interglacial cycles. The onset of sedimentation in these bedrock troughs is often reflected by diamicts and gravels directly overlying bedrock in the deepest basin segments. Subglacial or proglacial depositional environments have been proposed for these coarse‐grained basal units but their characteristics and origin remain controversial. This article presents results from drill cores that recovered a coarse‐grained basal unit in a major buried bedrock‐trough system in the Lower Glatt Valley, northern Switzerland. The excellent core recovery allowed a detailed study combining macroscopic, microscopic and geochemical methods and gives unprecedented insights into the transition from erosion to deposition in overdeepened bedrock troughs. These results show that the basal infill comprises diamicts, interpreted as subglacial tills, separated by thin sorted interbeds, originating from subglacial cavity deposition. The stacking of these units is interpreted to represent repeated switching between a coupled and decoupled ice–bed‐interface indicating an ever‐transforming mosaic of subglacial bed conditions. Decoupling in response to high basal water pressures is probably promoted by the confined subglacial hydraulic conditions resulting from the bedrock acting as aquitards, the narrow reverse sloping outlet and a large catchment area. While stratigraphic and lithological evidence suggests that erosion and the onset of basal sedimentation occurred during the same glaciation, different scenarios for the relative timing of infilling in relation to formation and glaciation of the bedrock trough are discussed. Overlying deltaic and glaciolacustrine sediments suggest deposition during subsequent deglaciation of the bedrock trough. The basal sediment characteristics are in agreement with previous reports in hydrogeological and seismic exploration and suggest the occurrence of similar basal successions in other subglacially overdeepened basins in the Alps and elsewhere.  相似文献   
22.
A.S. Gaab  M. Jank  U. Poller  W. Todt 《Lithos》2006,87(3-4):261-275
Magmatic protoliths of Ordovician age have been identified in the metamorphic rocks of the Muráñ Gneiss Complex, Veporic Unit (Central Western Carpathians). Vapor digestion single zircon U–Pb dating yields an intrusion age of 464 ± 35 Ma (upper intercept) for the granite protolith. A lower intercept age of 88 ± 40 Ma records amphibolite-facies metamorphic overprint in the Cretaceous, during the Alpine orogeny. Geochemical and isotopic data suggest crustal origin of the orthogneiss. Ndinitial are between − 2.6 and − 5.0 and TDMNd between 1.3 and 1.5 Ga (two-step approach). 87Sr / 86Srinitial ratios vary between 0.7247 and 0.7120, and a steep REE pattern further constrains the crustal affinity of these rocks. Associated amphibolite bodies have Ndinitial values of 6.5, 87Sr / 86Srinitial ratio of 0.7017, and a flat REE pattern. They are interpreted as MORB derived metabasites. Whole-rock Pb isotope analyses define a linear array in a 206Pb / 204Pb vs. 207Pb / 204Pb diagram with an age of ca. 134 Ma, consistent with intense Alpine metamorphism and deformation.

These basement rocks of the Central Western Carpathians are interpreted as Ordovician magmatic rocks intruded at an active margin of Gondwana. They represent the eastern prolongation of Cambro–Ordovician units of the European Variscides, which were part of the peri-Gondwana superterrane and accreted to Laurussia during the Variscan orogeny. Variscan metamorphic overprint is not recorded by the isotopic data of the Muráñ Gneiss Complex. Alpine metamorphism is the most dominant overprint.  相似文献   

23.
The Campos Gerais Domain (CGD) in southeastern Brazil is an approximately 180 km × 35 km area of Archean–Proterozoic rocks located southwest of the São Francisco Craton (SFC). The Archean–Paleoproterozoic evolution of the CGD — alongside its potential correlation with the SFC or other cratonic blocks in the region — is currently poorly-constrained. We present the results of systematic petrography, bulk-rock geochemistry, mineral chemistry and geochronology for a suite of scarcely studied mafic–ultramafic rocks from the CGD. We also provide a compilation of previously reported bulk-rock geochemical and spinel group mineral chemical data for mafic–ultramafic rocks throughout the CGD, and geochronological information for various lithotypes in the region. The CGD records a protracted Mesoarchean to Statherian (3.1–1.7 Ga) crustal evolution, which we interpret to share a common history with the southern SFC and their related reworked segments, suggesting that it is a westward extension of this cratonic terrain. The metavolcano-sedimentary rocks of the Fortaleza de Minas and Alpinópolis segments represent a Mesoarchean greenstone belt that is stratigraphically and chemically comparable to Archean greenstone belts worldwide, and that is broadly coeval with a local suite of tonalite-trondhjemite-granodiorite (TTG) gneisses and migmatites. U-Pb SHRIMP zircon data from a subalkaline metagabbro yielded a concordia age of ca. 2.96 Ga, revealing a previously unrecognized phase of Archean magmatism in the CGD that can be chrono-correlated with metakomatiite and TTG generation elsewhere in the São Francisco paleocontinent. Our data contradict a hypothesis whereby the metavolcano-sedimentary rocks of the Jacuí-Bom Jesus da Penha and Petúnia segments represent an ophiolite, as previously suggested, instead presenting features that point to formation in association with a continental arc. Coupled with a U-Pb (SHRIMP) crystallization age of ca. 2.13 Ga recorded by zircon grains from a metaultramafic rock, these data highlight that a magmatic event was chrono-correlated with the main accretionary phase of the Minas Orogeny, and with the Pouso Alegre/Amparo and São Vicente complexes. Finally, a U-Pb (SHRIMP) concordia age of ca. 590 Ma — obtained from metamorphic-textured zircon grains from a metaultramafic rock — points to a late metamorphic overprint related to upper amphibolite conditions, brittle fault activation and the juxtaposition of crustal blocks in association with the latest stages of western Gondwana’s assembly in the southern SFC, with later retrogression to greenschist-facies.  相似文献   
24.
This paper describes a rockfall event in the Daisekkei Valley of Mount Shirouma-dake (2,932 m), the northern Japanese Alps. The rockfall occurred on a steep cliff comprising well-jointed felsites and produced debris of ≥8,000 m3. Most debris was deposited on an elongated snowpatch located immediately beneath the cliff, and it caused casualties among people who were trekking along a trail on the snowpatch. Additionally, a large rock block slipped 1 km on the snowpatch. The rockfall could have been due to the differential retreat of the rockwall, which contains areas of high- and low-density joints. Seasonal and diurnal freeze–thaw activities and snow avalanches and wash appear to be important factors responsible for the retreat. Although some rock blocks that can collapse further remain on the rockwall, the position of the mountain trail in the Daisekkei Valley is fixed. Fundamental reform of tourism systems for climbers, including education on natural hazards, is required.  相似文献   
25.
Significantly different peak pressure–temperature (P–T) conditions (18–26 kbar and 630–760°C versus 29–37 kbar and 750–940°C) have previously been published for eclogite and related metabasites from the south-eastern flank of the Pohorje Mountains in Slovenia. These rocks can show a bimodal distribution of chromium in the rock-forming minerals, particularly garnet, the role of which in their metamorphic evolution is unclear. Therefore, we studied an eclogite and a related rock with clinopyroxene containing only 17 mol% jadeite + acmite (sample 18Ca35a). KαCr intensity maps of garnet particularly in sample 18Ca35a show a sharp irregular boundary between the core (Gt1) and the mantle (Gt2). Gt1 of millimetre-sized garnet in this rock is nearly Cr-free and unzoned, whereas Gt2 is of different composition (0.22 wt.% Cr2O3) and slightly zoned. Nearly Cr-free amphibole, (clino)zoisite, kyanite and staurolite inclusions are present in Gt1. The matrix consists of garnet and Cr-bearing clinopyroxene, (clino)zoisite and amphibole. Thermodynamic modelling suggests peak P–T conditions of 22.5 ± 2 kbar at 710 ± 25°C (Gt1) and 23 ± 2 kbar at 700 ± 25°C (Gt2) in both samples. We interpret these findings to suggest that olivine- and hornblende-bearing gabbros with some chromite experienced early metamorphism in the eclogite facies, when Gt1 formed. The rock was subsequently exhumed and cooled leading to significant garnet corrosion. A second stage of metamorphism, recognized by mappable Cr contents in garnet, led to the growth of Gt2 and other Cr-bearing minerals at the expense of chromite relics, which survived stage I. The peak P–T conditions of stage II are compatible with those previously derived by same authors and support the view that probably no ultrahigh-pressure eclogite exists in the Pohorje Mountains. We relate the two metamorphic events to the Cretaceous and Palaeogene high-pressure events recently reported from micaschists of the Pohorje Mountains.  相似文献   
26.
27.
Summary. After thermal and alternating field (AF) cleaning, the characteristic high blocking temperature A component of natural remanent magnetization (NRM) of the Tudor gabbro of southern Ontario has a mean direction D = 326°, I =–46° ( k = 132, α95= 4.8°, N = 8 sites). The corresponding palaeopole, 133°E, 12°N ( dp = 4°, dm = 6°), confirms the palaeopole 137°E, 17°N (α95= 8.4°) reported earlier by Palmer & Carmichael, based on AF cleaning only. The A NRM has unblocking temperatures > 515–525°C which exceed the estimated 500°C peak temperature reached locally during ∼ 1050 Ma Grenvillian regional metamorphism. The A NRM therefore predates metamorphism and is probably a primary thermoremanence (TRM). The age of the Tudor NRM has previously been taken to be about 675 Ma, but recent 40Ar/39Ar dating by Baksi has shown that this is the time of post-metamorphic cooling to 200–250°C. Hornblendes record initial cooling of the intrusion to 590±20°C at 1110 Ma and this is the best estimate of the age of the A remanence. Successful Thellier-type palaeointensity determinations on 11 Tudor samples confirm that the A NRM is a TRM and indicate a palaeofield at this time of 18–27 μT, about 50–70 per cent of the present field intensity at 27° magnetic latitude. The anomalous Tudor A palaeopole, which lies well to the west of both 1000–800 Ma Grenvillian palaeopoles and 1100–1050 Ma poles from Interior Laurentia, is interpreted as recording divergence between Grenvillia and Interior Laurentia just before the Grenvillian orogeny, rather than a post-metamorphic extension of the apparent polar wander path as previously assumed.  相似文献   
28.
灌丛对川西北高寒草甸土壤资源的影响   总被引:7,自引:1,他引:7  
刘长秀  张宏  泽柏 《山地学报》2006,24(3):357-365
以川西北高原红原县为研究区,用方格取样法,在相邻的高寒灌丛草地和高寒草甸样地中分别随机取0~20 cm土样50个,并分析了这些土样的土壤性状。利用SPSS(11.0)软件对实验数据进行了统计、分析和比较,研究了两个样地的各种土壤养分的平均含量、空间异质性和相关关系。结果表明,草甸样地的粘粒含量、Ptotal、Ntotal、ORG、Pavail、Navail、Kavail的含量都高于灌丛样地,且两样地速效养分差异极显著,但草甸样地土壤的ORG、Navail、Kavail的变异系数(CV)却明显小于灌丛样地,特别是Kavail的CV值,灌丛样地比草甸样地高出了53.37%;相关分析还表明,相对于草甸,灌丛样地中各养分元素之间的相关性明显增强。说明灌丛对高寒草甸土壤资源的异质性有明显的影响,其存在降低了草甸土壤养分的均值含量并增强了土壤养分的变异性和侵蚀潜力,不利于高寒草甸土壤养分的保持。  相似文献   
29.
During the Neogene and Quaternary, tectonic and climatic processes have had a profound impact upon landscape evolution in England and, perhaps as far back as 0.9 Ma, patterns of early human occupation. Until the Late Miocene, large-scale plate tectonic processes were the principal drivers of landscape evolution causing localised basin inversion and widespread exhumation. This drove, in places, the erosion of several kilometres of Mesozoic cover rocks and the development of a regional unconformity across England and the North Sea Basin. By the Pliocene, the relative influence of tectonics on landscape evolution waned as the background tectonic stress regime evolved and climatic influences became more prominent. Global-scale climate-forcing increased step-wise during the Plio-Pleistocene amplifying erosional and depositional processes that operated within the landscape. These processes caused differential unloading (uplift) and loading (subsidence) of the crust (‘denudational isostasy’) in areas undergoing net erosion (upland areas and slopes) and deposition (basins). Denudational isostasy amplified during the Mid-Pleistocene Transition (c.0.9 Ma) as landscapes become progressively synchronised to large-scale 100 ka ‘eccentricity’ climate forcing. Over the past 0.5 Ma, this has led to the establishment of a robust climate record of individual glacial/interglacial cycles enabling comparison to other regional and global records. During the Last Glacial-Interglacial Transition and early Holocene (c.16–7 ka), evidence for more abrupt (millennial/centennial) scale climatic events has been discovered. This indicates that superimposed upon the longer-term pattern of landscape evolution is a more dynamic response of the landscape to local and regional drivers.  相似文献   
30.
A metamorphic petrological study, in conjunction with recent precise geochronometric data, revealed a complex PTt path for high-grade gneisses in a hitherto poorly understood sector of the Mesoproterozoic Maud Belt in East Antarctica. The Maud Belt is an extensive high-grade, polydeformed, metamorphic belt, which records two significant tectono-thermal episodes, once towards the end of the Mesoproterozoic and again towards the late Neoproterozoic/Cambrian. In contrast to previous models, most of the metamorphic mineral assemblages are related to a Pan-African tectono-thermal overprint, with only very few relics of late Mesoproterozoic granulite-facies mineral assemblages (M1) left in strain-protected domains. Petrological and mineral chemical evidence indicates a clockwise PTt path for the Pan-African orogeny. Peak metamorphic (M2b) conditions recorded by most rocks in the area (T = 709–785 °C and P = 7.0–9.5 kbar) during the Pan-African orogeny were attained subsequent to decompression from probably eclogite-facies metamorphic conditions (M2a).The new data acquired in this study, together with recent geochronological and geochemical data, permit the development of a geodynamic model for the Maud Belt that involves volcanic arc formation during the late Mesoproterozoic followed by extension at 1100 Ma and subsequent high-grade tectono-thermal reworking once during continent–continent collision at the end of the Mesoproterozoic (M1; 1090–1030 Ma) and again during the Pan-African orogeny (M2a, M2b) between 565 and 530 Ma. Post-peak metamorphic K-metasomatism under amphibolite-facies conditions (M2c) followed and is ascribed to post-orogenic bimodal magmatism between 500 and 480 Ma.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号