首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1483篇
  免费   148篇
  国内免费   386篇
测绘学   1篇
大气科学   19篇
地球物理   152篇
地质学   1698篇
海洋学   13篇
天文学   4篇
综合类   58篇
自然地理   72篇
  2024年   8篇
  2023年   21篇
  2022年   21篇
  2021年   28篇
  2020年   35篇
  2019年   48篇
  2018年   50篇
  2017年   43篇
  2016年   46篇
  2015年   44篇
  2014年   51篇
  2013年   100篇
  2012年   71篇
  2011年   57篇
  2010年   49篇
  2009年   81篇
  2008年   66篇
  2007年   96篇
  2006年   95篇
  2005年   72篇
  2004年   82篇
  2003年   75篇
  2002年   65篇
  2001年   64篇
  2000年   59篇
  1999年   71篇
  1998年   58篇
  1997年   52篇
  1996年   57篇
  1995年   67篇
  1994年   60篇
  1993年   59篇
  1992年   36篇
  1991年   22篇
  1990年   21篇
  1989年   27篇
  1988年   11篇
  1987年   12篇
  1986年   12篇
  1985年   4篇
  1984年   6篇
  1983年   9篇
  1981年   2篇
  1980年   2篇
  1979年   1篇
  1978年   1篇
排序方式: 共有2017条查询结果,搜索用时 15 毫秒
101.
In the eastern Sierras Pampeanas, Central Argentina, tourmalinites and coticules are found in close association with stratabound scheelite deposits in metamorphic terranes. In Sierra Grande (Agua de Ramón and Ambul districts) and Sierra de Altautina, tourmalinites are associated with stratabound scheelite deposits related to orthoamphibolites. In the Pampa del Tamboreo area, tourmalinites are located in biotite schists stratigraphically related to acid to intermediate metavolcanic rocks and scheelite-bearing quartzites.The mineral chemistry and boron isotopic compositions of tourmalinite-hosted and vein-hosted tourmalines are investigated. Overall, the tourmalines belong to the dravite-schorl series and are generally aluminous; Fe/(Fe+Mg) ranges from 0.33 to 0.85, Al/(Al+Fe+Mg) from 0.66 to 0.76 and the amount of X-site vacancy (0.12–0.48) indicates significant foitite components. Their boron isotopic compositions (δ11B) are from −24.0‰ to−15.0‰.Similar mineral chemistries and boron isotopic values for tourmaline in tourmalinites related to stratabound scheelite mineralisation and in tungsten-bearing quartz veins suggest a common source for the boron and probably the tungsten. The field, chemical and isotopic relationships are consistent with tungsten and boron in quartz-vein deposits being remobilised from stratabound scheelite and tourmalinite, dominantly by liquid-state transfer associated with regional shear zones. Tungsten and boron in the original sedimentary sequence (now meta-exhalites) are ascribed to volcanogenic exhalations.  相似文献   
102.
The prograde deserpentinized peridotites from the talc zone in the Happo-O’ne complex, central Japan, show differences in their field relation and mineral assemblage with the high-P retrograde peridotites of the other part of the complex. They show a mineral assemblage, olivine + talc + antigorite ± prograde tremolite ± chlorite, formed by thermal metamorphism around the granitic intrusion at T, 500-650 °C and P < 7 kbar. The olivine has numerous opaque inclusions and high Fo (91.5-96.5) relative to the retrograde olivine, reflecting its formation by deserpentinization. The prograde tremolite, which is low in Al2O3 (<1.0 wt.%), Cr2O3 (<0.35 wt.%), and Na2O (<0.6 wt.%) but high in Mg# (up to 0.98) and SiO2 (up to 59.9 wt.%), is different in size, shape and chemistry from the retrograde tremolite. The prograde peridotites display a U-shaped REE pattern (0.02-0.5 times PM), similar to diopside-zone retrograde metaperidotites, possible protoliths. They are enriched in LILE (e.g., Cs, Pb, Sr, Rb) relative to HFSE (e.g., Ta, Hf, Zr, Nb), like their protoliths, because of their local re-equilibration with the fluid released during dehydration of the protoliths. They have high contents of REE and some trace elements (e.g., Cs, Th, U, Ta) relative to their protoliths because of an external-element addition from the granitic magma. In-situ analyses of peridotitic silicates confirmed that the prograde tremolite and talc display a spoon-shaped primitive mantle (PM)-normalized REE pattern (0.1-3 times PM) in which LREE are higher than HREE contents. The prograde tremolite is depleted in Al, Na, Cr, Sc, V, Ti, B, HREE and Li, but is enriched in Si, Cs, U, Th, HFSE (Hf, Zr, Nb, Ta), Rb and Ba relative to the retrograde tremolite; the immobile-element depletion in this tremolite is inherited from its source (antigorite + secondary diopside), whereas the depletion of mobile elements (e.g., Li, B, Na, Al) is ascribed to their mobility during the deserpentinization and/or the depleted character of the source of tremolite. The enrichment of HFSE and LILE in the prograde tremolite is related to an external addition of these elements from fluid/melt of the surrounding granitic magma and/or in situ equilibrium with LILE-bearing fluid released during dehydration of serpentinized retrograde metaperidotites and olivine-bearing serpentinites (protoliths). The prograde olivine is higher in REE and most trace-element contents than the retrograde one due to the external addition of these elements; it is enriched in B, Co and Ni, but depleted in Li that was liberated during deserpentinization by prograde metamorphism.  相似文献   
103.
L. Gaggero  L. Cortesogno 《Lithos》1997,40(2-4):105-131
The 117.38 m of gabbroic core drilled during the Ocean Drilling Program (ODP) Leg 153 at Sites 921 to 924 in the Mid-Atlantic Ridge (MAR) between 23 °N and the Kane Fracture Zone, exhibits a remarkable primary compositional heterogeneity, such as magmatic layering, intrusive contacts and late magmatic veining, which express a succession of magmatic events. Textural indicators suggest that the cooling of the crystal mush occurred in a dynamic environment, with infiltration of progressively evolved liquids. Magmatic features include random shape fabric and magmatic lamination; the subsequent deformational overprint occurred in subsolidus conditions. The ductile deformation, generally concentrated in discrete domains of the gabbro, is associated with continuous re-equilibration of the metamorphic assemblages of (1) olivine + clinopyroxene + orthopyroxene + plagioclase + ilmenite + Ti-magnetite, (2) olivine + clinopyroxene + plagioclase + ilmenite + Ti-magnetite + red hornblende. At lower temperatures brittle deformation prevails and subsequent fractures control the development of metamorphic assemblages: (3) clinopyroxene + plagioclase + red brown hornblende + Ti-magnetite + magnetite (?) + ilmenite, (4) plagioclase + brown hornblende + Ti-magnetite + magnetite + hematite + titanite ± Ti-oxide, (5) plagioclase + green hornblende + magnetite + titanite, (6) plagioclase + actinolite + chlorite + titanite + magnetite, (7) albite + actinolite + chlorite + prehnite ± epidote ± titanite and (8) albite + prehnite + chlorite ± smectite. Assemblages 1 to 8 express increasing water/rock ratios and decreasing degrees of recrystallization.

During the ductile phase, red hornblende is stable and its abundance increases with deformation intensity, possibly as an effect of the introduction of hydrous fluids. During the brittle phase, water diffusion controls the development of the fracture-filling mineral assemblages and re-equilibration of the adjacent rock; temperatures decrease further, as demonstrated by mineral zoning and incompletely re-equilibrated assemblages. The lowest temperatures correspond to the development of hydrothermal assemblages.

Compared with oceanic gabbros from fast-spreading transform environments, high-temperature ductile phases (granulite and amphibolite) are well developed, whereas brittle phases are widespread, as microcracks, prevalent on fracturing associated with discrete veins.  相似文献   

104.
The Ross of Mull pluton consists of granites and granodioritesand intrudes sediments previously metamorphosed at amphibolitefacies. The high grade and coarse grain size of the protolithis responsible for a high degree of disequilibrium in many partsof the aureole and for some unusual textures. A band of metapelitecontained coarse garnet, biotite and kyanite prior to intrusion,and developed a sequence of textures towards the pluton. InZone I, garnet is rimmed by cordierite and new biotite. In ZoneII, coarse kyanite grains are partly replaced by andalusite,indicating incomplete reaction. Coronas of cordierite + muscovitearound kyanite are due to reaction with biotite. In the higher-gradeparts of this zone there is complete replacement of kyaniteand/or andalusite by muscovite and cordierite. Cordierite chemistryindicates that in Zone II the stable AFM assemblage (not attained)would have been cordierite + biotite + muscovite, without andalusite.The observed andalusite is therefore metastable. Garnet is unstablein Zone II, with regional garnets breaking down to cordierite,new biotite and plagioclase. In Zone III this breakdown is welladvanced, and this zone marks the appearance of fibrolite andK-feldspar in the groundmass as a result of muscovite breakdown.Zone IV shows garnet with cordierite, biotite, sillimanite,K-feldspar and quartz. Some garnets are armoured by cordieriteand are inferred to be relics. Others are euhedral with Mn-richcores. For these, the reaction biotite + sillimanite + quartz garnet + cordierite + K-feldspar + melt is inferred. Usinga petrogenetic grid based on the work of Pattison and Harte,pressure is estimated at 3·2 kbar, and temperature atthe Zone II–III boundary at 650°C and in Zone IV asat least 750°C. KEY WORDS: contact metamorphism; disequilibrium  相似文献   
105.
喜马拉雅超高压变质带主要由表壳岩石组成,其中的长英质变质岩已经全部退变质,只在基性的榴辉岩中保留有某些超高压变质矿物.这些超高压变质矿物在锆石、石榴石及其他一些化学和机械性质稳定的矿物中以微米级的包裹体形式产出.到目前为止,已经在Tso Morari结晶穹隆和上Kaghan谷高喜马拉雅结晶岩中发现了超高压指示矿物柯石英和多晶石英假像.这2个地区同属一个超高压变质带,具有相似的构造背景、岩石组成及变质年龄.Kaghan谷超高压变质岩形成条件为700~770°C和2.7~3.2 GPa,相当于90~110 km 的上地幔深度,形成年龄为(46.2±0.7) Ma.Tso Morari结晶穹隆中超高压变质岩的形成条件约为750°C和3.9 GPa,形成年龄为(48±1) Ma.上述超高压变质带在其折返过程中普遍经历了强烈的水化和角闪岩相退变质作用.研究表明,印度大陆地壳俯冲的垂向速率为1.1~1.4 cm/a,水平速率为4.5 cm/a,俯冲到约100 km深度时的平均俯冲角度为14~19°.  相似文献   
106.
Garnet peridotites occur as lenses, blocks or layers within granulite–amphibolite facies gneiss in the Dabie-Sulu ultra-high-pressure (UHP) terrane and contain coesite-bearing eclogite. Two distinct types of garnet peridotite were identified based on mode of occurrence and petrochemical characteristics. Type A mantle-derived peridotites originated from either: (1) the mantle wedge above a subduction zone, (2) the footwall mantle of the subducted slab, or (3) were ancient mantle fragments emplaced at crustal depths prior to UHP metamorphism, whereas type B crustal peridotite and pyroxenite are a portion of mafic–ultramafic complexes that were intruded into the continental crust as magmas prior to subduction. Most type A peridotites were derived from a depleted mantle and exhibit petrochemical characteristics of mantle rocks; however, Sr and Nd isotope compositions of some peridotites have been modified by crustal contamination during subduction and/or exhumation. Type B peridotite and pyroxenite show cumulate structure, and some have experienced crustal metasomatism and contamination documented by high 87Sr/86Sr ratios (0.707–0.708), low εNd( t ) values (−6 to −9) and low δ18O values of minerals (+2.92 to +4.52). Garnet peridotites of both types experienced multi-stage recrystallization; some of them record prograde histories. High- P–T  estimates (760–970 °C and 4.0–6.5±0.2 GPa) of peak metamorphism indicate that both mantle-derived and crustal ultramafic rocks were subducted to profound depths >100 km (the deepest may be ≥180–200 km) and experienced UHP metamorphism in a subduction zone with an extremely low geothermal gradient of <5 °C km−1.  相似文献   
107.
本文对地处我国南方高山的峨眉山自动气象站自2002年10月运行8年来出现或遇到的各种因雷暴、雨雾凇冻结、连续高湿等天气引起的问题进行分析,提出保证高山自动气象站正常运行的一些方法和思路。  相似文献   
108.
Toshiaki Tsunogae  M. Santosh 《Lithos》2006,92(3-4):524-536
We report here a multiphase mineral inclusion composed of quartz, plagioclase, K-feldspar, sapphirine, spinel, orthopyroxene, and biotite, in porphyroblastic garnet within a pelitic granulite from Rajapalaiyam in the Madurai Granulite Block, southern India. In this unique textural association, hitherto unreported in previous studies, sapphirine shows four occurrences: (1) as anhedral mineral between spinel and quartz (Spr-1), (2) subhedral to euhedral needles mantled by quartz (Spr-2), (3) subhedral to anhedral mineral in orthopyroxene, and (4) isolated inclusion with quartz (Spr-4). Spr-1, Spr-2, and Spr-4 show direct grain contact with quartz, providing evidence for ultrahigh-temperature (UHT) metamorphism at temperatures exceeding 1000 °C. Associated orthopyroxene shows high Mg/(Fe + Mg) ratio ( 0.75) and Al2O3 content (up to 9.6 wt.%), also suggesting T > 1050 °C and P > 10 kbar during peak metamorphism.

Coarse spinel (Spl-1) with irregular grain morphology and adjacent quartz grains are separated by thin films of Spr-1 and K-feldspar, suggesting that Spl-1 and quartz were in equilibrium before the stability of Spr-1 + quartz. This texture implies that the P–T conditions of the rock shifted from the stability field of spinel + quartz to sapphirine + quartz. Petrogenetic grid considerations based on available data from the FMAS system favour exhumation along a counterclockwise P–T trajectory. The irregular shape of the inclusion and chemistry of the inclusion minerals are markedly different from the matrix phases suggesting the possibility that the inclusion minerals could have equilibrated from cordierite-bearing silicate-melt pockets during the garnet growth at extreme UHT conditions.  相似文献   

109.
Abstract Three types of mineral associations are described from calc-silicate granulites from the Eastern Ghats, India, where geothermobarometry in associated rocks suggests extremely high P–T conditions of metamorphism ( c . 9 ± 1 kbar, 950° C). These mineral associations are: (i) calcite + quartz + scapolite + plagioclase, (ii) calcite + scapolite + wollastonite + porphyroblastic garnet + coronal garnet and (iii) calcite + quartz + wollastonite + scapolite + porphyroblastic garnet + coronal garnet, all coexisting with K-feldspar, titanite and clinopyroxene. The first two associations evolved through nearly isobaric cooling retrograde paths, whereas the third evolved through a nearly isothermal decompression path followed by an isobaric cooling retrograde path. Textural and compositional characteristics suggest the following mineral reactions in the calc-silicate granulites: calcite + quartz = wollastonite + CO2, calcite + plagioclase = scapolite, calcite + scapolite + wollastonite = porphyroblastic garnet ± quartz + CO2, CaTs + wollastonite = coronal garnet (association ii) and wollastonite + scapolite = coronal garnet (association iii) + quartz + CO2. Andradite content in garnet was buffered by the redox equilibria wollastonite + hedenbergite + O2= andradite + quartz (association iii) and wollastonite + andradite + CaTs + scapolite = hedenbergite + calcite + grossular + O2 (association ii). The contrasting mineral parageneses have been ascribed to interplay of variables such as X CO2, f O2, f HCl in the fluid, bulk Na content and the nature of the retrograde P–T–X CO2 paths through which the rocks evolved.  相似文献   
110.
Garnet‐bearing ultramafic rocks including clinopyroxenite, wehrlite and websterite locally crop out in the Higashi‐akaishi peridotite of the Besshi region in the Cretaceous Sanbagawa metamorphic belt. These rock types occur within dunite as lenses, boudins or layers with a thickness ranging from a few centimetres to 1 metre. The wide and systematic variation of bulk‐rock composition and the overall layered structure imply that the ultramafic complex originated as a cumulate sequence. Garnet and other major silicates contain rare inclusions of edenitic amphibole, chlorite and magnetite, implying equilibrium at relatively low P–T conditions during prograde metamorphism. Orthopyroxene coexisting with garnet shows bell‐shaped Al zoning with a continuous decrease of Al from the core towards the rim, consistent with rims recording peak metamorphic conditions. Estimated P–T conditions using core and rim compositions of orthopyroxene are 1.5–2.4 GPa/700–800 °C and 2.9–3.8 GPa/700–810 °C, respectively, implying a high P/T gradient (> 3.1 GPa/100 °C) during prograde metamorphism. The presence of relatively low P–T conditions at an early stage of metamorphism and the steep P/T gradient together trace a concave upwards P–T path that shows increasing P/T with higher T, similar to P–T paths reported from other UHP metamorphic terranes. These results suggest either (1) down dragging of hydrated mantle cumulate parallel to the slab–wedge interface in the subduction zone by mechanical coupling with the subducting slab or (2) ocean floor metamorphism and/or serpentinization at early stage of subduction of oceanic lithosphere and ensuing HP–UHP prograde metamorphism.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号