首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17篇
  免费   1篇
  国内免费   2篇
大气科学   1篇
地球物理   7篇
地质学   6篇
海洋学   4篇
自然地理   2篇
  2016年   2篇
  2015年   1篇
  2014年   1篇
  2012年   1篇
  2011年   1篇
  2010年   1篇
  2009年   1篇
  2008年   3篇
  2005年   1篇
  2004年   1篇
  2003年   2篇
  2000年   2篇
  1997年   2篇
  1992年   1篇
排序方式: 共有20条查询结果,搜索用时 0 毫秒
11.
This study describes the groundwater quantity and quality conditions in the Damghan aquifer in Iran. The quantitative analysis of data obtained from observation wells indicates overexploitation of groundwater during recent years, which has resulted in deterioration of water quality. The mean water level has declined about 7.4 m between years of 1966 and 2010. The hydrochemical facies of water collected from sampling wells were investigated though Piper and Chadha diagrams, and the general dominant type of water in the study area was determined as Na-Cl. The quality assessment examined the suitability of groundwater for drinking and irrigation purposes. Compared to the World Health Organization (WHO) guidelines for drinking water, all regions were found to have unpotable groundwater. Furthermore, unsuitability of groundwater for agricultural applications due to high salinity was observed through analysis of major quality indicators. The saltwater intrusion was investigated by ionic ratio analyses and was determined to be the main factor contributing to high salinity and deterioration of the groundwater quality in the Damghan basin.  相似文献   
12.
M. Frei  U. Bielert  H. Heinrichs   《Chemical Geology》2000,170(1-4):221-242
Thirty-four springs were sampled on five different source rocks in the upper Ecker watershed of the Northern Harz Mountains (Germany) four times during the course of 1995. The analyses included 41 cations and the major anions. Approximately 90% of the rocks in the upper Ecker watershed are low in basic cations, which inhibit the neutralisation of hydrogen-ion loading. As a consequence, the concentrations of Al, Fe, Mn, Zn, Pb, Y, Ce, As, La, Nd, Cd, Be, Co, Sb, Pr, Gd, Dy, Yb, Er, Sm, U, Tl, Ho and Tb of the Ecker dam water (pH=5.1) exceed those of the nearby Söse Dam water (pH=6.5) by almost one order of magnitude or more. With the exception of the spring waters on gabbro (pH up to 7.7) all waters on the highly siliceous rocks (quartzite, granite and gneiss) are dominated by sulfate anions with a pH range of 4–6. The concentrations of major conservative ions show a progressive increase with decreasing catchment elevation and decreasing average precipitation. Trace elements such as Sr, Be, Zn, Cd, Ba, Y, La, lanthanides, U, Li, Ni, Al, Mn, Co, Cu, Pb, As, Sb and Tl are increased in the low acid neutralizing capacity (ANC(aq)) spring waters. The behaviours of Sr, Be, Zn, Cd, Ba, Y, La, lanthanides and U resemble that of the major cations. The highest concentrations of Li and Ni are found on quartzite. Al, Mn, Co and Cu exhibit no clear correlation with catchment elevation and one particular bedrock. The concentrations of V and Cr show a distinct increase in high ANC(aq) spring waters on gabbro. Pb, As, Sb and Tl are characterized by being found in relatively high concentrations on granite at higher altitudes. Pb, As and Sb are affected by contaminated soils. The extreme variability of trace element concentrations of low ANC(aq) spring waters cannot be explained by the rock data. It is mainly controlled by the topography-dependent weathering rates of the different rock-types and the decreasing dilution with decreasing catchment elevation.  相似文献   
13.
北衙金矿富碱斑岩-滑覆构造控矿体系及成矿规律   总被引:2,自引:2,他引:2  
综合前人研究成果和矿区勘查新进展,提出斑岩.滑覆构造体系控矿的初步设想,对矿区以后的勘查和研究工作有一定指导意义。  相似文献   
14.
Chrysophyte cysts were identified from the surface sediment of 105 mountain lakes in the Pyrenees (NE Spain), and their statistical relationship to water chemistry was examined using canonical correspondence analysis (CCA). The chemical parameters that explained significant and independent amounts of variability were alkalinity, pH, potassium, nitrate and magnesium. In a CCA using these parameters, the first canonical axis was related to a gradient of alkalinity and pH, which reflected the varying nature of the watershed bedrock in the Pyrenees, while the second axis was correlated with potassium (negatively) and nitrate (positively). The potential for environmental reconstructions of the five chemical parameters was further studied by: (i) analyzing the distribution of optima and tolerances calculated by weighted-averaging (WA); (ii) carrying out detrended canonical correspondence analysis (DCCA) with a single environmental variable; and (iii) examining the performance of WA-PLS transfer functions. Acceptable transfer functions were obtained for alkalinity, pH and nitrate. However, for potassium and magnesium the tolerance of cysts was too broad and the distribution of optima too skewed, respectively. The possibility of reconstructing nitrogen-related issues using chrysophyte cysts is particularly interesting because of the lack of direct chemical records of nitrogen compounds in sediments. Nitrate reconstructions using transfer functions may be complemented by a holistic reconstruction using partial CCA, where, after subtracting the effects of other chemicals, samples are ordered on a plain defined by potassium and nitrate. This ordination could show down-core trends in lake productivity and renewal time.  相似文献   
15.
To ascertain the influence of hydrological boundary conditions on acidity fluxes in lakes influenced by acid mine drainage, acidity budgets were developed for two sediments in areas of differential groundwater inflow (approx. 1 L m?2 d?1 and 10 L m?2 d?1). In both sediments iron was deposited as schwertmannite leading to iron(III) enriched sediments (3.9…6.2 mmol g?1, referred to dry weight). Compared to the surface water, the inflowing groundwater had higher pH (4.5 vs. 3), ferrous iron (6…20 mmol L?1 vs. 0.8…2.0 mmol L?1), and sulfate (5…60 mmol L?1 vs. 8…13 mmol L?1) concentrations. The inflow changed the sediment pore water chemistry and triggered a further increase in pH to above 5.5. In both sediments acidity generation in the surface water (10…30 mol m?2 a?1) strongly prevailed over acidity consumption in the sediments (> ?0.6 mol m?2 a?1). With advective groundwater inflow, however, more acidity was consumed due to TRIS formation (?0.12 mol m?2 a?1 vs. ?0.017 mol m?2 a?1), iron carbonate burial (upper estimate: ?0.14 mol m?2 a?1 vs. ?0.022 mol m?2 a?1), and unspecific ferrous iron retention (?0.39 mol m?2 a?1 vs. ?0.08 mol m?2 a?1). Also, less acidity was generated due to schwertmannite transformation (?2.4 mol m?2 a?1 vs. ?0.11 mol m?2 a?1). The acidity balance of internal processes in the sediment with groundwater inflow was negative, whereas it was positive in the other sediment. The study demonstrates that in acidic and iron rich lakes the hydrological boundary conditions strongly affect geochemical processes as subsumed in acidity fluxes.  相似文献   
16.
The variability of sea surface Total Alkalinity (TA) and sea surface Total Inorganic Carbon (CT) is examined using all available data in the western tropical Atlantic (WTA: 20°S-20°N, 60°W-20°W). Lowest TA and CT are observed for the region located between 0°N-15°N/60°W-50°W and are explained by the influence of the Amazon plume during boreal summer. In the southern part of the area, 20°S-10°S/40°W-60°W, the highest values of TA and CT are linked to the CO2–rich waters due to the equatorial upwelling, which are transported by the South Equatorial Current (SEC) flowing from the African coast to the Brazilian shore. An increase of CT of 0.9 ± 0.3 μmol kg−1yr−1 has been observed in the SEC region and is consistent with previous published estimates. A revised CT-Sea Surface Salinity (SSS) relationship is proposed for the WTA to take into account the variability of CT at low salinities. This new CT-SSS relationship together with a published TA-SSS relationship allow to calculate pCO2 values that compare well with observed pCO2 (R2 = 0.90).  相似文献   
17.
青岛近海碱度的研究及其测定方法的比较   总被引:1,自引:0,他引:1  
2012年春季以青岛近海为研究海域,采用pH单点法、自动电位滴定法及溶解无机碳(DIC)计算法测得海水总碱度(Alk),并对这3种方法进行比较;探讨该海域海水Alk的分布特征及影响因素;对过滤前后样品的Alk差值与叶绿素(Chl-a)间的相关性进行分析。结果表明:DIC计算法和pH单点法得出的Alk误差较大,电位滴定法测定的Alk结果精密度较高;青岛近海海域表层水体中Alk范围为2 070~2 364μmol/kg,其平均值2 310μmol/kg;过滤前后样品的Alk差值与Chl-a含量具有一定的相关性,表明浮游植物和颗粒物对Alk有影响。  相似文献   
18.
The benthic fluxes (diffusive and with chambers) of dissolved inorganic carbon (DIC), dissolved oxygen (DO) and total alkalinity (TA) have been calculated in summertime in the estuary system formed by the mouths of the Tinto and Odiel rivers (SW of Spain). An increase of DIC in interstitial water with depth was found for all stations showing values of up to 28 mM at a depth of 5 cm. The diffusive fluxes of DIC and TA obtained ranging between 1.8–7.8 and 1.5–7.3 mmol m−2 d−1, respectively. These intervals are in agreement with those found for other coastal systems. Considering the plots of DIC vs. alkalinity (ΔDIC/ΔTA) in the first 30 cm of interstitial water, it was deduced that sulphate reduction and the oxidation of sulphides seem to have special relevance in the sediments of the stations studied. The benthic fluxes of inorganic carbon and DO measured by benthic chambers were variable, presenting elevated values (309–433 mmol DIC m−2 d−1 and 50–120 mmol DO m−2 d−1). The most elevated fluxes of DIC were seen at the stations with high anthropogenic influence (close to populated areas and industrial discharges). A great proportion of these fluxes are due to CaCO3 dissolution processes, which constitute an estimated 49% of total DIC flux. DIC and DO benthic flux quotients were far in excess of unity, indicating the significance processes of anaerobic degradation of organic material at the stations studied.  相似文献   
19.
About one third of several hundred mining lakes in Eastern Germany are highly acidified, and there is a need to restore them to neutral conditions because they constitute an environmental hazard for water resources and downstream environments. The aim of this study is to evaluate the efficiency of three different acid pit lake water remediation treatments: dilution with alkaline (river) water, limestone treatment and biological neutralization by organic carbon-driven alkalinity generation. The efficiency is evaluated for the acidic mining lake Grünewalder Lauch by adjusting input values into a geochemical model and making future projections. Current approaches, such as flooding with neutral surface water or extensive liming, are not suitable for many lakes because of a limited supply of alkaline water or high lime immobilizing potential of Fe- and Al-rich water in acidic lakes, respectively. Further treatment methods are, therefore, designed to combine water supply and biological measures with the management of water quality by the application of in-lake microbial processes. These processes are focused on the metabolic response of aquatic ecosystems to nutrient enrichment (enhancement of primary production and thereby organic carbon supply) and the microbial decomposition of organic matter and their effects on the gain or loss of alkalinity.The results and comparisons of different neutralization measures will be generalized by the application of hydrogeochemical models for alkalinity production showing
a)
the long term efficiency of the measures, depending on carbon turnover at the sediment/water interface,
b)
the development of bicarbonate buffering capacity as a consequence of biological measures,
c)
the importance of pyrite formation instead of FeS.
  相似文献   
20.
Sediment cores were used to estimate in-lake alkalinity generation resulting from sulfate reduction relative to inferred changes in lakewater pH and trophic status over the last century in three Connecticut lakes. Despite being situated in geological settings with crystalline bedrock and thin, poorly buffered soils, and being impacted with high rates of acidic precipitation, none of the study lakes have declined in inferred pH based on scaled chrysophyte and diatom remains. In fact, the pH of one of the lakes, Coventry Lake, has significantly increased over the last century. Over the last 44 to 69 years the amount of sulfur stored in the sediments from each lake increased from ~two to three times resulting in mean rates of alkalinity generation ranging from 78 to 145 meq m–2 yr–1, significantly higher than the 45 to 48 meq m–2 yr–1 of hydrogen ions falling directly on the lake surfaces. In-lake alkalinity generation resulting from sulfate reduction has been sufficient to neutralize all of the acid falling directly onto the lake surfaces, as well as between 9% and 25% of the acid deposited onto the surrounding watersheds. Despite the increased importance of in-lake alkalinity generation, our findings support the hypothesis that significant amounts of alkalinity are also being generated in the catchments of the study lakes. The bulk of the increases in stored sulfur in all three lakes were as Fe sulfides and not in the form of organic sulfur, suggesting that the increases were the result of dissimilatory bacterial reduction of sulfate. As a result of the large increases in storage of Fe sulfides the ratio of total iron to chromium reducible sulfur (Fe:CRS) has declined in all cores over time. Despite the overall decline in Fe:CRS in recent sediments, values are still largely above 3 in more recent sediments of two of the lakes. However, values of Fe:CRS have dropped below 1 in surface sediments of Uncas Lake, suggesting that in-lake loading of phosphorus may be responsible for a recent shift in the algal flora towards a slightly more eutrophic condition.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号