首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   254篇
  免费   33篇
  国内免费   116篇
大气科学   1篇
地球物理   39篇
地质学   327篇
海洋学   27篇
天文学   1篇
综合类   7篇
自然地理   1篇
  2024年   2篇
  2023年   7篇
  2022年   3篇
  2021年   7篇
  2020年   5篇
  2019年   12篇
  2018年   5篇
  2017年   12篇
  2016年   8篇
  2015年   10篇
  2014年   18篇
  2013年   17篇
  2012年   6篇
  2011年   18篇
  2010年   11篇
  2009年   25篇
  2008年   21篇
  2007年   21篇
  2006年   25篇
  2005年   29篇
  2004年   19篇
  2003年   10篇
  2002年   11篇
  2001年   12篇
  2000年   12篇
  1999年   11篇
  1998年   13篇
  1997年   11篇
  1996年   3篇
  1995年   6篇
  1994年   5篇
  1993年   3篇
  1992年   6篇
  1991年   4篇
  1990年   4篇
  1989年   4篇
  1988年   1篇
  1987年   2篇
  1985年   1篇
  1984年   1篇
  1980年   1篇
  1979年   1篇
排序方式: 共有403条查询结果,搜索用时 31 毫秒
31.
In situ zircon U–Pb ages and Hf isotopic data, major and trace elements, and Sr–Nd–Pb isotopic compositions are reported for Nanshanping alkaline rocks from the Zijingshan district in southwestern Fujian Province (the Interior or Western Cathaysia Block) of South China. The Nanshanping alkaline rocks, which consist of porphyritic quartz monzonite, porphyritic syenite, and syenite, revealed a Late Cretaceous age of 100–93 Ma. All of the rocks show high SiO2, K2O + Na2O, and LREE but low CaO, Fe2O3T, MgO, and HFSE (Nb, Ta, P, and Ti) concentrations. These rocks also exhibit uniform initial 87Sr/86Sr ratios of 0.7078 to 0.7087 and εNd(t) values of −4.1 to −7.2, thus falling within the compositional field of Cretaceous basalts and mafic dikes occurring in the Cathaysia Block. Additionally, these rocks display initial Pb isotopic compositions with a 206Pb/204Pbi ratio of 18.25 to 18.45, a 207Pb/204Pbi ratio of 15.63 to 15.67, and a 208Pb/204Pbi ratio of 38.45 to 38.88. Combined with the zircon Hf isotopic compositions (εHf(t) = −11.7 to −3.2), which are different from those of the basement rocks, we suggest that Nanshanping alkaline rocks were primarily derived from a subduction-related enriched mantle source. High Rb/Sr (0.29–0.65) and Zr/Hf (37.5–49.2) but relatively low Ba/Rb (4.4–8.1) ratios suggest that the parental magmas of these rocks were most likely formed via partial melting of a phlogopite-bearing mantle source with carbonate metasomatism. The relatively high SiO2 (62.35–70.79 wt.%) and low Nb/Ta (10.0–15.3) ratios, positive correlation between SiO2 and (87Sr/86Sr)I, and negative correlation between SiO2 and εNd(t) of these rocks suggest that the crustal materials were also involved in formation of the Nanshanping alkaline rocks. Combined with geochemical and isotopic features, we infer magmatic processes similar to AFC (assimilation and fractional crystallization) involving early fractionation of clinopyroxene and olivine and subsequent fractionation of biotite-dominated assemblages coupled with a lesser amount of crustal contamination, thereby forming the Nanshanping alkaline rocks. The Nanshanping alkaline rocks appear to be associated with an extensional environment in the Cathaysia Block. This extensional regime could have resulted in the slab break-off and rollback of the subducting paleo-Pacific plate and the upwelling of the asthenospheric mantle, which induced partial melting of the enriched lithospheric mantle in the Cretaceous.  相似文献   
32.
The La Peña alkaline complex (LPC) of Miocene age (18–19 Ma) lies on the eastern front of the Precordillera (32°41ʹ34ʺS, 68°59ʹ48″W, 1400–2900 m a.s.l.), 30 km northwest of Mendoza city, Argentina. It is a subcircular massif of 19 km2 and 5 km in diameter, intruded in the metasedimentary sequence of the Villavicencio Formation of Silurian-Devonian age. It is the result of integration of multiple pulses derived from one or more deep magma chambers, which form a suite of silicate rocks grouped into: a clinopyroxenite body, a central syenite facies with a large breccia zone at the contact with the clinopyroxenite, bodies of malignite, trachyte and syenite porphyry necks, and a system of radial and annular dikes of different compositions. Its subcircular geometry and dike system distribution are frequent features of intraplate plutons or plutons emplaced in post-orogenic settings. These morphostructural features characterize numerous alkaline complexes worldwide and denote the importance of magmatic pressures that cause doming with radial and annular fracturing, in a brittle country rock. However, in the LPC, the attitude of the internal fabric of plutonic and subvolcanic units and the preferential layout of dikes match the NW–SE extensional fractures widely distributed in the host rock. This feature indicates a strong tectonic control linked to the structure that facilitate space for emplacement, corresponding to the brittle shear zone parallel to the N–S stratigraphy of the country rock. Shearing produced a system of discontinuities, with a K fractal fracture pattern, given by the combination of Riedel (R), anti-Riedel (R′), (P) and extensional (T) fracture systems, responsible for the control of melt migration by the opening of various fracture branches, but particularly through the NW–SE (T) fractures. Five different pulses would have ascent, (1) an initial one from which cumulate clinopyroxenite was formed, (2) a phase of mafic composition represented by dikes cross-cutting the clinopyroxenite, (3) a malignite facies that causes a small breccia in the clinopyroxenite, (4) a central syenite facies that develops breccias at the contact with the clinopyroxenite and, finally, (5) porphyry necks and a system of radial dikes intruding all units. At the moment of the emplacement different mechanisms would have acted, they summarized in: 1) opening of discontinuities synchronous to the magma circulation as the principal mechanism for formation of dikes and conduits; 2) stoping processes, that play an important role in the development of the breccia zone and enabling an efficient transference of material during the emplacement of the syenitic magma and 3) shear-related deformation (regional stress), affected the internal fabric of the facies, causing intracrystalline deformation and submagmatic flow, which is very evident in the central syenite intrusive. The kinematic analysis of shear planes allows proposing that emplacement of the LPC took place in a transtensive regime, which would have occurred in the back-arc of the Andes orogen, during a long period spanning from Miocene to the present, of the compressive deformation responsible, westward and at the same latitude, for the development of the Aconcagua fold and thrust belt.  相似文献   
33.
柳坪苦橄玄武岩出露在青藏高原东北缘特殊的构造部位,位于青藏、华北和扬子三大构造域的交接转换区域。岩石形成年龄在23~7.1Ma之间,属于新近纪火山岩。岩石SiO2介于41.72%~42.82%之间,Na2OK2O,K2O/Na2O平均0.51,为一套典型的幔源钠质碱性玄武岩类。岩石微量及稀土元素具板内火山岩特征,Th、Rb等元素呈较明显的富集状态,而岩石显著的低K2O特征(0.48%~0.90%)明显不同于青藏高原北缘新生代钾质-超钾质火山岩系列。岩石87Sr/86Sr(0.704158~0.704668)、143Nd/144Nd(0.512831~0.513352)、206Pb/204Pb(18.729871~18.779184)、207Pb/204Pb(15.591395~15.602454)和208Pb/204Pb(39.097372~39.181458)等同位素变化特征具有显著的混源属性,投影点位于EMI、EMII、BSE及PREMA等典型地幔储库的过渡部位,并可能存在HIUM地幔源的部分参与,明显不同于单一地幔源局部熔融形成的玄武岩的同位素组成特征。表明新生代期间青藏东缘西秦岭-松潘地区受青藏、扬子及华北三大构造体系域的控制,西秦岭-松潘构造结处于从下部地幔到上部陆壳物质的总体汇聚拼贴阶段,地幔具有显著的混合特征。柳坪苦橄玄武岩正是在这种特定的构造背景下,由于新生代青藏高原软流圈地幔物质向东的流动,诱发西秦岭-松潘构造结多源混合的地幔橄榄岩局部熔融而形成。  相似文献   
34.
根据山东省文登钾长石矿的矿石物质组成和工艺特性 ,经过不同选别方法、不同药剂种类、不同药剂用量的试验 ,确定了较佳选矿工艺 ,并以此为基础进行了半工业型试验。最终获得了特级钾长石产品。  相似文献   
35.
东昆仑祁漫塔格地区是近年来发现的具有优越多金属成矿条件的地区,区内中-酸性侵入岩广泛发育且与成矿关系密切。于沟子铁-稀有多金属矿床位于祁漫塔格地区西部,矿床主要由产于钾长花岗岩外接触带矽卡岩内的铁-铜(钼)多金属矿化体及产于花岗岩体内部的铌、铷等稀有元素矿化体组成。锆石LA-MC-ICP-MS定年测得钾长花岗岩U-Pb年龄为210.0±0.6Ma,属晚三叠世末期岩浆活动的产物。岩体主要由条纹长石(60%~65%)、斜长石(10%~15%)、石英(20%~22%)、钠闪石(4%~5%)和少量黑云母(1%~2%)等组成,为典型的碱性花岗岩。地球化学特征上,该岩体具有高硅、高钾、准铝、钙碱性特点,富Nb、Zr、Rb、Th、U,贫Ba、Sr、P、Ti等元素,稀土元素总量较高,富集轻稀土,具强烈的负Eu异常(δEu=0.09~0.26),属于A型花岗岩。锆石εHf(t)值为-6.71~2.25,平均为-1.15,二阶段Hf模式年龄(t DM2)为1102~1674Ma,显示在成岩过程中有地幔物质的参与。综合研究认为,于沟子岩体形成于晚三叠世末后造山板内伸展阶段,该碱性花岗岩的确定,标志着东昆仑祁漫塔格地区在晚三叠世末(212~210Ma)已逐步演化为伸展构造背景下的后造山构造阶段。同时矿床的成矿时代、氧同位素及电子探针结果均显示花岗岩与铁-稀有多金属成矿有关,指示出该类型碱性花岗岩具有良好的铁-稀有多金属成矿潜力。  相似文献   
36.
Concavo-convex contacrs between oolites and quartz grains are observed in mixed siliciclastic-carbonate rocks of the lower part of number 1 of Shahejie Formation, beach area, Dagang. Thin sections observation shows that oolite is convex in quartz grain, and oolite is complete. A possible explanation for it is pressure dissolution under alkaline fluid.  相似文献   
37.
The sheeted quartz–sulfide veins of the Radzimowice Au–As–Cu deposit in the Kaczawa Mountains are related to Upper Carboniferous post-collisional potassic magmatism of the composite Zelezniak porphyry intrusion. Multiple intrusive activity ranges from early calc-alkaline to sub-alkaline and alkaline rocks and is followed by multiple hydrothermal events. Early crustally derived dacitic magma has low mg# (<63) and very low concentrations of mantle-compatible trace elements, high large-ion lithophile elements (LILE), moderate light rare-earth elements (LREE), and low high-field-strength elements (HFSE). Later phases of more alkaline rocks have higher mg# (60–70), and LILE, LREE, and HFSE characteristics that indicate mafic magma contributions in a felsic magma chamber. The last episode of the magmatic evolution is represented by lamprophyre dikes which pre-date ore mineralization and are spatially related to quartz–sulfide–carbonate veins. The dikes consist of kersantite and spessartite of calc-alkaline affinity with K2O/Na2O ratios of 1.1–1.9, mg# of 77–79, and high abundances of mantle-compatible trace elements such as Cr, Ni, and V. They have high LILE, low LREE, and low HFSE contents suggesting a subduction-related post-collisional arc-setting. The mineralization started with arsenopyrite that was strongly brecciated and overprinted by multiple quartz–carbonate phases associated with base-metal sulfides and Au–Ag–Bi–Te–Pb±S minerals. The sulfur isotope composition of sulfides ranges from –1.1 to 2.8 34S and suggests a magmatic source. At least two generations of gold deposition are recognized: (1) early refractory, and (2) subsequent non-refractory gold mineralization of epithermal style. Co-rich arsenopyrite with refractory gold and pyrite are the most abundant minerals of the early stage of sulfide precipitation. Early arsenopyrite formed at 535–345°C along the arsenopyrite–pyrrhotite–loellingite buffer and late arsenopyrite crystallized below 370°C along the arsenopyrite–pyrite buffer. Non-refractory gold associated with base-metal sulfides and with Bi–Te–Ag–Pb–S mineral assemblages has an average fineness of about 685, and is represented by electrum of two generations, and minor maldonite (Au2Bi). Fluid inclusions from various quartz generations co-genetic with base-metal sulfides and associated with carbonates, tellurides and non-refractory gold indicate fluids with moderate salinity (9–15 wt% NaCl equiv.) and a temperature and pressure drop from 350 to 190°C and 1.2 to 0.8 kbar, respectively. According to the result of the sulfur isotope fractionation geothermometer the temperature of base-metal crystallization was in the range from 322 to 289°C. Preliminary results of oxygen isotope studies of quartz from veins indicate a gradual increase in the proportion of meteoric water in the epithermal stage. The gold to silver ratio in ore samples with >3 ppm Au is about 1:5 (geometric mean). Hydrothermal alteration started with sericitization, pyritization, and kaolinitization in vein selvages followed by alkaline hydrothermal alteration of propylitic character (illitization and chloritization), albitization and carbonatization. The mineralization of the Radzimowice deposit is considered as related to alkaline magmatism and is characterized by the superposition of low-sulfidation epithermal mineralization on higher-temperature and deeper-seated mesothermal/porphyry style.Editorial handling: B. Lehmann  相似文献   
38.
Intracrystal microtextures formed by a process of mutual replacement in alkali feldspars record fluid–rock reactions that have affected large volumes of the Earth’s crust. Regular, ≤1 μm-scale ‘strain-controlled’ perthitic microtextures coarsen, by up to 103, by a dissolution–reprecipitation process, producing microporous patch or vein perthites on scales >100 μm. We have developed earlier studies of such reactions in alkali feldspar cm-scale primocrysts in layered syenites from the Klokken intrusion, South Greenland. We present new hyperspectral CL, SEM images, and laser ICPMS analytical data, and discuss the mechanism of such replacement reactions. The feldspars grew as homogeneous sodic sanidines which unmixed and ordered by volume diffusion during cooling into the microcline field at ~450°C, giving regular, fully coherent ‘braid’ cryptoperthite. At ≤450°C the crystals reacted with a circulating post-magmatic aqueous fluid. The braid perthite behaved as a single reactant ‘phase’ which was replaced by two product phases, incoherent subgrains of low albite and microcline, with micropores at their boundaries. The driving force for the reactions was coherency strain energy, which was greater than the surface energy in the subgrain mosaic. The external euhedral crystal shapes and bulk major element composition of the primocrysts were unchanged but they became largely pseudomorphs composed of subgrains usually with the ‘pericline’ and ‘adularia’ habits (dominant {110} and subordinate {010} morphology) characteristic of low T growth. The subgrains have an epitactic relationship with parent braid perthite. Individual subgrains show oscillatory zoning in CL intensity, mainly at blue wavelengths, which correlates with tetrahedral Ti. Regular zoning is sometimes truncated by irregular, discordant surfaces suggesting dissolution, followed by resumption of growth giving regular zoning. Zones can be traced through touching subgrains, of both albite and microcline, for distances up to ~500 μm. At ≤340°C, the microcline subgrains underwent a third stage of unmixing to give straight lamellar film perthites with periodicities of ~1 μm, which with further cooling became semicoherent by the development of spaced misfit dislocations. Sub-grain growth occurred in fluid films that advanced through the elastically strained braid perthite crystals, which dissolved irreversibly. Braid perthite was more soluble than the strain-free subgrain mosaics which precipitated from the supersaturated solution. Some volumes of braid texture have sharp surfaces that suggest rapid dissolution along planes with low surface energies. Others have complex, diffuse boundaries that indicate a phase of coherent lamellar straightening by volume diffusion in response to strain relief close to a slowly advancing interface. Nucleation of strain-free subgrains was the overall rate-limiting step. To minimise surface energy subgrains grew with low energy morphologies and coarsened by grain growth, in fluid films whose trace element load (reflected in the oscillatory zoning) was dictated by the competitive advance of subgrains over a range of a few tens of mm. The cross-cutting dissolution surfaces suggest influxes of fresh fluid. Removal of feldspar to give 2 vol% porosity would require a feldspar:fluid ratio of ~1:26 (by wt). The late reversion to strain-controlled exsolution in microcline subgrains is consistent with loss of fluid above 340°C following depressurization of the intrusion. A second paper (Part II) describes trace element partitioning between the albite and microcline subgrains, and discusses the potential of trace elements as a low-T geothermometer. This paper and the Part II are dedicated in memory of J.V. Smith and W.L. Brown, both of whom died in 2007, in acknowledgement of their unrivalled contributions to the study of the feldspar minerals over more than half a century.  相似文献   
39.
从湖南省北部赤山岛枫树嘴旧石器遗址剖面第2、第3和第4考古层位采集的3个沉积物样品中提取的细粒混合矿物,尝试对其红外释光(IRSL)信号进行研究。实验表明,虽然长石IRSL信号很弱,但仍可以测得信噪比足够高的红外激发后高温红外激发释光(post-IR IRSL)信号。与此同时,样品存在明显的红外激发后蓝光释光(post-IR OSL)信号,并且样品的IRSL与post-IR OSL信号均以快组分为主,这为该地区沉积物利用长石光释光信号定年提供了新的可能。鉴于长石IRSL信号较弱,根据剂量恢复实验结果,本研究采用post-IR IRSL SAR法(50℃红外激发后270℃高温红外激发,pIRIR270℃)进行等效剂量测量,同时也应用post-IR OSL SAR法定年进行比较。实验结果表明,细粒混合矿物的pIRIR270℃等效剂量分别为418.8±13.2 Gy、562.3±18.2 Gy和694.8±17.9 Gy,相对应的post-IR OSL SAR等效剂量结果为345.0±29.4 Gy、409.6±33.7 Gy和424.7±32.2 Gy。假设强烈化学风化未对沉积物的剂量率造成很大影响,基于长石pIRIR270℃信号的释光年龄为89±6 ka、118±8 ka和152±9 ka,比前人所得的石英OSL SAR法年龄老30%~55%(约20~55 ka)。通过对比不同测量条件下获得的等效剂量值来评估长石IRSL信号是否存在晒退问题,没有发现长石post-IR IRSL信号存在晒退不完全的证据。根据本研究post-IR IRSL SAR法测年结果,赤山岛枫树嘴旧石器遗址似阿舍利技术类型的石器出现在倒数第二次冰期(MIS 6)后期至末次间冰期(MIS 5)前期,比湖南道县福岩洞现代人类牙齿化石年龄(80~120 ka)稍老。作为似阿舍利技术石器制造者的赤山岛古人与福岩洞现代人的关系将是我国旧石器时代考古学和古人类学研究的一个重要课题。  相似文献   
40.
王泽蛟 《城市地质》2019,14(1):60-64
通过对薄杖子钾长石矿地质特征分析,阐述了该矿床的成因类型,为中酸性侵入岩型。钾长石矿严格受沿断裂侵入的燕山期碱性正长岩小岩株控制,通过岩浆结晶分离作用而形成,区内矿体基本裸露于地表,地表出露体呈零星分布,矿体形态均不规则。矿体的主要矿物为钾长石,次要矿物为石英、条纹长石、绢云母、黑云母、角闪石,副矿物为黄铁矿、磁铁矿。矿石自然类型为碱性正长岩型,工业类型为玻璃及建筑陶瓷用钾长石矿,开发利用方向为玻璃及建筑陶瓷工业原料。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号