首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1768篇
  免费   22篇
  国内免费   171篇
测绘学   62篇
大气科学   94篇
地球物理   438篇
地质学   1080篇
海洋学   125篇
天文学   37篇
综合类   2篇
自然地理   123篇
  2024年   15篇
  2023年   42篇
  2022年   53篇
  2021年   74篇
  2020年   168篇
  2019年   98篇
  2018年   125篇
  2017年   179篇
  2016年   115篇
  2015年   138篇
  2014年   234篇
  2013年   371篇
  2012年   219篇
  2011年   11篇
  2010年   7篇
  2009年   5篇
  2008年   1篇
  2007年   3篇
  2006年   8篇
  2005年   13篇
  2004年   19篇
  2003年   13篇
  2002年   21篇
  2001年   2篇
  2000年   1篇
  1999年   5篇
  1998年   1篇
  1996年   3篇
  1995年   1篇
  1994年   5篇
  1993年   2篇
  1992年   2篇
  1991年   3篇
  1990年   1篇
  1989年   2篇
  1988年   1篇
排序方式: 共有1961条查询结果,搜索用时 921 毫秒
211.
An approximate solution of the classical eigenvalue problem governing the vibrations of a relatively stiff structure on a soft elastic soil is derived through the application of a perturbation analysis. The full solution is obtained as the sum of the solution for an unconstrained elastic structure and small perturbing terms related to the ratio of the stiffness of the soil to that of the superstructure. The procedure leads to approximate analytical expressions for the system frequencies, modal damping ratios and participation factors for all system modes that generalize those presented earlier for the case of stiff soils. The resulting approximate expressions for the system modal properties are validated by comparison with the corresponding quantities obtained by numerical solution of the eigenvalue problem for a nine-story building. The accuracy of the proposed approach and of the classical normal mode approach is assessed through comparison with the exact frequency response of the test structure.  相似文献   
212.
Model testing in laboratory, as an effective alternative to field measurement, provides valuable data to understand railway׳s dynamic behaviors under train moving loads. This paper presents comprehensive experimental results on track vibration and soil response of a ballastless high-speed railway from a full-scale model testing with simulated train moving loads at various speeds. A portion of a realistic ballastless railway comprising slab track, roadbed, subgrade, and subsoil was constructed in a larger steel box. A computer-controlled sequential loading system was developed to generate equivalent vertical loadings at the track structure for simulating the dynamic excitations due to train׳s movements. Comparisons with the field measurements show that the proposed model testing can accurately reproduce dynamic behaviors of the track structure and underlying soils under train moving loads. The attenuation characteristics of dynamic soil stresses in a ballastless slab track is found to have distinct differences from that in a ballasted track. The model testing results provide better understanding of the influence of dynamic soil–structure interaction and train speed on the response of track structure and soils.  相似文献   
213.
In this study, a novel and enhanced soil–structure model is developed adopting the direct analysis method using FLAC 2D software to simulate the complex dynamic soil–structure interaction and treat the behaviour of both soil and structure with equal rigour simultaneously. To have a better judgment on the inelastic structural response, three types of mid-rise moment resisting building frames, including 5, 10, and 15 storey buildings are selected in conjunction with three soil types with the shear wave velocities less than 600 m/s, representing soil classes Ce, De and Ee, according to Australian Standards. The above mentioned frames have been analysed under two different boundary conditions: (i) fixed-base (no soil–structure interaction) and (ii) flexible-base (considering soil–structure interaction). The results of the analyses in terms of structural displacements and drifts for the above mentioned boundary conditions have been compared and discussed. It is concluded that considering dynamic soil–structure interaction effects in seismic design of moment resisting building frames resting on soil classes De and Ee is essential.  相似文献   
214.
This paper presents the dynamic soil–structure analysis of the main telescope T250 of the Observatorio Astrofísico de Javalambre (OAJ, Javalambre Astrophysical Observatory) on the Pico del Buitre. Vibration control has been of prime concern in the design, since astrophysical observations may be hindered by mechanical vibration of optical equipment due to wind loading. The telescope manufacturer therefore has imposed a minimal natural frequency of 10 Hz for the supporting telescope pier. Dynamic soil–structure interaction may significantly influence the lowest natural frequency of a massive construction as a telescope pier. The structure clamped at its base has a resonance frequency of 14.3 Hz. A coupled finite element–boundary element (FE–BE) model of the telescope pier that accounts for the dynamic interaction of the piled foundation and the soil predicts a resonance frequency of 11.2 Hz, demonstrating the significant effect of dynamic soil–structure interaction. It is further investigated to what extent the coupled FE–BE model can be simplified in order to reduce computation time. The assumption of a rigid pile cap allows us to account for dynamic soil–structure interaction in a simplified way. A coupled FE–BE analysis with a rigid pile cap predicts a resonance frequency of 11.7 Hz, demonstrating a minor effect of the pile cap flexibility on the resonance frequency of the telescope pier. The use of an analytical model for the pile group results in an overestimation of the dynamic soil stiffness. This error is due to the large difference between the actual geometry and the square pile cap model for which the parameters have been tuned.  相似文献   
215.
Performance based design of structure requires a reasonably accurate prediction of displacement or ductility demand. Generally, displacement demand of structure is estimated assuming fixity at base and considering base motion in one direction. In reality, ground motions occur in two orthogonal directions simultaneously resulting in bidirectional interaction in inelastic range, and soil–structure interaction (SSI) may change structural response too. Present study is an attempt to develop insight on the influence of bi-directional interaction and soil–pile raft–structure interaction for predicting the inelastic response of soil–pile raft–structure system in a more reasonably accurate manner. A recently developed hysteresis model capable to simulate biaxial interaction between deformations in two principal directions of any structural member under two orthogonal components of ground motion has been used. This study primarily shows that a considerable change may occur in inelastic demand of structures due to the combined effect of such phenomena.  相似文献   
216.
217.
Stable-isotope fractionation has become an established method for the assessment of contaminant biodegradation in groundwater. At the pore scale however, mass-transfer processes can limit the bioavailability of chemical species and therefore affect the observed fractionation. This can challenge the application of stable-isotope analysis in practice. A linear-exchange model provides a computational link between the microbially-induced isotope fractionation, determined under ideal conditions, and the fractionation observed under conditions of limited bioavailability. This simplifying conceptual approach allows for accurately estimating the mass-transfer limited degradation rates but its applicability for stable-isotope fractionation at the pore scale has not been evaluated yet. In this study, we perform high-resolution numerical simulations of microbial degradation and stable-isotope fractionation of a chemical species in a pore-scale model. The numerical results are compared to theoretical predictions derived from the linear-exchange model. Our results show an overall good agreement between numerical simulations and theoretical predictions, which confirms the applicability of the theoretical approach and of the value for the mass-transfer coefficient previously derived from the geometry of the pore space. In addition we provide a quantitative link between the value of the observable fractionation factor and the effective bioavailability of a biodegradable contaminant.  相似文献   
218.
《Marine Geodesy》2013,36(3-4):383-397
The Jason-1 Operational Sensor Data Record (OSDR) is intended as a wind and wave product that is aimed towards near-real–time (NRT) meteorological applications. However, the OSDR provides most of the information that is required to determine altimetric sea surface heights in NRT. The exceptions include a sufficiently accurate orbit altitude, and pressure fields to determine the dry troposphere path delay correction. An orbit altitude field is provided on the OSDR but has accuracies that range between 8–25 cm (RMS). However, tracking data from the on-board BlackJack GPS receiver are available with sufficiently short latency for use in the computation of NRT GPS-based orbit solutions. The orbit altitudes from these NRT orbit solutions have typical accuracies of < 3.0 cm (RMS) with a latency of 1–3 h, and < 2.5 cm (RMS) with a latency of 3–5 h. Meanwhile, forecast global pressure fields from the National Center for Environmental Prediction (NCEP) are available for the NRT computation of the dry troposphere correction. In combination, the Jason-1 OSDR, the NRT GPS-based orbit solutions, and the NCEP pressure fields can be used to compute sea surface height observations from the Jason-1 mission with typical latencies of 3–5 h, and have differences with those from the 2–3 day latency Interim Geophysical Data Records of < 5 cm (RMS). The NRT altimetric sea surface height observations are potentially of benefit to forecasting, tactical oceanography, and natural hazard monitoring.  相似文献   
219.
This paper focuses on the frequency property analysis of near-fault ground motions with and without distinct pulses, separately from the Chi-Chi and Northridge earthquakes. Ten scalar period parameters of ground motions, especially several nonlocal period parameters, are considered. Two new nonlocal parameters, namely the mean period of Hilbert marginal spectrum (Tmh) and the improved characteristic period (Tgi), are suggested. Moreover, comprehensive comparison and analysis indicate that Tmh, Tgi and Tavg (average spectral period) can distinguish the low-frequency components of near-fault ground motions; Tm (mean period of Fourier amplitude spectrum) and To (smoothed spectral predominant period) represent the moderate- and high-frequency components, respectively. The variance coefficient of predominant instantaneous frequency of Hilbert spectrum (Hcov) can be regarded as an alternative index to measure the non-stationary degree of near-fault ground motions. Finally, the velocity pulses and earthquake magnitude remarkably affect the frequency parameters of near-fault ground motions. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
220.
The aim of this paper is to study the effects of soil–structure interaction on the seismic response of coupled wall-frame structures on pile foundations designed according to modern seismic provisions. The analysis methodology based on the substructure method is recalled focusing on the modelling of pile group foundations. The nonlinear inertial interaction analysis is performed in the time domain by using a finite element model of the superstructure. Suitable lumped parameter models are implemented to reproduce the frequency-dependent compliance of the soil-foundation systems. The effects of soil–structure interaction are evaluated by considering a realistic case study consisting of a 6-storey 4-bay wall-frame structure founded on piles. Different two-layered soil deposits are investigated by varying the layer thicknesses and properties. Artificial earthquakes are employed to simulate the earthquake input. Comparisons of the results obtained considering compliant base and fixed base models are presented by addressing the effects of soil–structure interaction on displacements, base shears, and ductility demand. The evolution of dissipative mechanisms and the relevant redistribution of shear between the wall and the frame are investigated by considering earthquakes with increasing intensity. Effects on the foundations are also shown by pointing out the importance of both kinematic and inertial interaction. Finally, the response of the structure to some real near-fault records is studied. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号