首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1768篇
  免费   22篇
  国内免费   171篇
测绘学   62篇
大气科学   94篇
地球物理   438篇
地质学   1080篇
海洋学   125篇
天文学   37篇
综合类   2篇
自然地理   123篇
  2024年   15篇
  2023年   42篇
  2022年   53篇
  2021年   74篇
  2020年   168篇
  2019年   98篇
  2018年   125篇
  2017年   179篇
  2016年   115篇
  2015年   138篇
  2014年   234篇
  2013年   371篇
  2012年   219篇
  2011年   11篇
  2010年   7篇
  2009年   5篇
  2008年   1篇
  2007年   3篇
  2006年   8篇
  2005年   13篇
  2004年   19篇
  2003年   13篇
  2002年   21篇
  2001年   2篇
  2000年   1篇
  1999年   5篇
  1998年   1篇
  1996年   3篇
  1995年   1篇
  1994年   5篇
  1993年   2篇
  1992年   2篇
  1991年   3篇
  1990年   1篇
  1989年   2篇
  1988年   1篇
排序方式: 共有1961条查询结果,搜索用时 702 毫秒
181.
Multiple ridges across prograding coasts may display variable geometries, commonly expressed through varying elevations. Changes in ridge elevation have been traditionally related to the occurrence of fluctuating progradation rates, which might, in turn, be driven by shifting environmental conditions. Here, we explore the geometry and growth mechanisms of multiple ridges, generated at Barreta Island (Ria Formosa, southern Portugal), as a consequence of the rapid progradation of the island over the last 70 years, following the artificial fixation of the downdrift Faro-Olhão inlet with jetties in 1955. The variability in the morphology of these features was analysed in combination with available wind and wave data, in order to better distinguish growth mechanisms and understand the main parameters determining the final geometry of the observed ridges. The results suggest that (1) most of the identified ridges fall in the beach ridge classification, as they have been mostly built by marine processes, and (2) the parameters derived from, or closely related to wave climate variability (e.g. progradation rates, storm occurrence) can jointly explain most of the observed morphological changes, while aeolian processes played a secondary role. Indeed, ridge geometry appears mainly controlled by progradation rates, with higher ridges associated with lower progradation rates. Progradation rate, in turn, is mostly related to longshore wave power, storminess, and the occurrence storm groups. Yet, the final configuration of ridges can also be affected by runup levels and onshore winds. Therefore, establishing the relation between ridge geometry and wave climate is not a straightforward task, because of the complex processes and interactions that control coastal morphodynamics. © 2019 John Wiley & Sons, Ltd.  相似文献   
182.
To investigate the seismic response of a pile group during liquefaction, shaking table tests on a 1/25 scale model of a 2 × 2 pile group were conducted, which were pilot tests of a test project of a scale-model offshore wind turbine with jacket foundation. A large laminar shear box was utilized as the soil container to prepare a liquefiable sandy ground specimen. The pile group model comprising four slender aluminum piles with their pile heads connected by a rigid frame was designed with similitude considerations focusing on soil–pile interaction. The input motions were 2-Hz sinusoids with various acceleration amplitudes. The excess pore water pressure generation indicated that the upper half of the ground specimen reached initial liquefaction under the 50-gal-amplitude excitation, whereas in the 75-gal-amplitude test, almost entire ground was liquefied. Accelerations in soil, on the movable frames composing the laminar boundary of the shear box, and along the pile showed limited difference at the same elevation before liquefaction. After liquefaction, the soil and the movable-frame accelerations that represented the ground response considerably reduced, whereas both the movable frames and the piles exhibited high-frequency jitters other than 2-Hz sinusoid, and meantime, remarkable phase difference between the responses of the pile group and the ground was observed, all probably due to the substantial degradation of liquefied soil. Axial strains along the pile implied its double-curvature bending behavior, and the accordingly calculated moment declined significantly after liquefaction. These observations demonstrated the interaction between soil and piles during liquefaction.  相似文献   
183.
Understanding the hydrologic connectivity between kettle holes and shallow groundwater, particularly in reaction to the highly variable local meteorological conditions, is of paramount importance for tracing water in a hydro(geo)logically complex landscape and thus for integrated water resource management. This article is aimed at identifying the dominant hydrological processes affecting the kettle holes' water balance and their interactions with the shallow groundwater domain in the Uckermark region, located in the north-east of Germany. For this reason, based on the stable isotopes of oxygen (δ18O ) and hydrogen (δ2H ), an isotopic mass balance model was employed to compute the evaporative loss of water from the kettle holes from February to August 2017. Results demonstrated that shallow groundwater inflow may play the pivotal role in the processes taking part in the hydrology of the kettle holes in the Uckermark region. Based on the calculated evaporation/inflow (E/I) ratios, most of the kettle holes (86.7%) were ascertained to have a partially open, flow-through-dominated system. Moreover, we identified an inverse correlation between E/I ratios and the altitudes of the kettle holes. The same holds for electrical conductivity (EC) and the altitudes of the kettle holes. In accordance with the findings obtained from this study, a conceptual model explaining the interaction between the shallow groundwater and the kettle holes of Uckermark was developed. The model exhibited that across the highest altitudes, the recharge kettle holes are dominant, where a lower ratio of E/I and a lower EC was detected. By contrast, the lowest topographical depressions represent the discharge kettle holes, where a higher ratio of E/I and EC could be identified. The kettle holes existing in between were categorized as flow-through kettle holes through which the recharge takes place from one side and discharge from the other side.  相似文献   
184.
Traditional coherence algorithms are often based on the assumption that seismic traces are stationary and Gaussian. However, seismic traces are actually non-stationary and non-Gaussian. A constant time window and the canonical correlation analysis in traditional coherence algorithms are not optimal for non-stationary seismic traces and cannot describe the similarity between adjacent seismic traces in detail. To overcome this problem, a new coherence algorithm using the high-resolution time–time transform and the feature matrix is designed. The high-resolution time–time transform used to replace the constant time window can produce a frequency-dependent time local series to analyse non-stationary seismic traces. The feature matrix, constructed by the frequency-dependent time local series and the related local gradients, defines a new correlation metric that enhances more details of the geological discontinuities in seismic images than does the canonical correlation analysis. Additionally, the Riemannian metric is introduced for related calculations because the feature matrices are not defined in a Euclidean space but rather in a manifold space. Application to field data illustrates that the proposed method reveals more details of structural and stratigraphic features.  相似文献   
185.
Inspired by the idea of the iterative time–frequency peak filtering, which applies time–frequency peak filtering several times to improve the ability of random noise reduction, this article proposes a new cascading filter implemented using mathematic morphological filtering and the time–frequency peak filtering, which we call here morphological time–frequency peak filtering for convenience. This new method will be used mainly for seismic signal enhancement and random noise reduction in which the advantages of the morphological algorithm in processing nonlinear signals and the time–frequency peak filtering in processing nonstationary signals are utilized. Structurally, the scheme of the proposed method adopts mathematic morphological operation to first preprocess the signal and then applies the time–frequency peak filtering method to ultimately extract the valid signal. Through experiments on synthetic seismic signals and field seismic data, this paper demonstrates that the morphological time–frequency peak filtering method is superior to the time–frequency peak filtering method and its iterative form in terms of valid signal enhancement and random noise reduction.  相似文献   
186.
Sandy-muddy transitional beaches (SMT-Beaches), representing the transition from sandy beaches to tidal mudflats, should theoretically develop very different morphological and sedimentological characteristics in river estuaries and in semi-enclosed bays due to their contrasting dynamic sedimentary environments. Evidence, however, is rare in the scientific literature. To reveal these morphological and sedimentary differences, the sand–mud transition (SMT) boundary distribution, beach profiles, and surface and downcore sediment grain-size compositions of 27 SMT-Beaches located along mesotidal to macrotidal coasts of the western Taiwan Strait, southeastern China, were investigated. The results show that typical estuarine SMT-Beaches are mainly characterized by an ambiguous SMT, a long distance between the SMT and the coastline (31–302 m), lower SMT and inflection point altitudes (average –0.76 m and –0.04 m), and lower upper beach gradients (~0.068) with fine sand. Estuarine SMT-Beach sediments display clear interbedded mud and sand layers, implying potential SMT migrations over various timescales. By contrast, typical bay SMT-Beaches are characterized by distinct SMT, a short distance between the SMT and the coastline (11–52 m), higher SMT and inflection point altitudes (~0.24 m and ~0.35 m), and narrower upper beaches with higher gradients (~0.095) and coarse sand. Bay SMT-Beaches present relatively stable sedimentary sequences and a narrow gravel belt surrounding the inflection point and/or SMT. These morphological and sedimentary differences between the two SMT-Beach types are initially constrained by sediment supply and transport and are further affected by tide conditions and wave climate. Sediment supply and transport predominately control the sediment structures, while the tidal range strongly influences spatial variations in SMT distances. Wave climate normally drives SMT altitude variations. This study highlights the morphological and sedimentary differences in SMT-Beaches in estuaries and bays, providing important knowledge for further revealing their morphodynamic processes and potential future nourishment. © 2020 John Wiley & Sons, Ltd.  相似文献   
187.
Soil erosion is one of the most important environmental problems distributed worldwide. In the last decades, numerous studies have been published on the assessment of soil erosion and the related processes and forms using empirical, conceptual and physically based models. For the prediction of the spatial distribution, more and more sophisticated stochastic modelling approaches have been proposed – especially on smaller spatial scales such as river basins. In this work, we apply a maximum entropy model (MaxEnt) to evaluate badlands (calanchi) and rill–interrill (sheet erosion) areas in the Oltrepo Pavese (Northern Apennines, Italy). The aim of the work is to assess the important environmental predictors that influence calanchi and rill–interrill erosion at the regional scale. We used 13 topographic parameters derived from a 12 m digital elevation model (TanDEM-X) and data on the lithology and land use. Additional information about the vegetation is introduced through the normalized difference vegetation index based on remotely sensed data (ASTER images). The results are presented in the form of susceptibility maps showing the spatial distribution of the occurrence probability for calanchi and rill–interrill erosion. For the validation of the MaxEnt model results, a support vector machine approach was applied. The models show reliable results and highlight several locations of the study area that are potentially prone to future soil erosion. Thus, coping and mitigation strategies may be developed to prevent or fight the soil erosion phenomenon under consideration. © 2020 John Wiley & Sons, Ltd.  相似文献   
188.
Investigating the performance that can be achieved with different hydrological models across catchments with varying characteristics is a requirement for identifying an adequate model for any catchment, gauged or ungauged, just based on information about its climate and catchment properties. As parameter uncertainty increases with the number of model parameters, it is important not only to identify a model achieving good results but also to aim at the simplest model still able to provide acceptable results. The main objective of this study is to identify the climate and catchment properties determining the minimal required complexity of a hydrological model. As previous studies indicate that the required model complexity varies with the temporal scale, the study considers the performance at the daily, monthly, and annual timescales. In agreement with previous studies, the results show that catchments located in arid areas tend to be more difficult to model. They therefore require more complex models for achieving an acceptable performance. For determining which other factors influence model performance, an analysis was carried out for four catchment groups (snowy, arid, and eastern and western catchments). The results show that the baseflow and aridity indices are the most consistent predictors of model performance across catchment groups and timescales. Both properties are negatively correlated with model performance. Other relevant predictors are the fraction of snow in the annual precipitation (negative correlation with model performance), soil depth (negative correlation with model performance), and some other soil properties. It was observed that the sign of the correlation between the catchment characteristics and model performance varies between clusters in some cases, stressing the difficulties encountered in large sample analyses. Regarding the impact of the timescale, the study confirmed previous results indicating that more complex models are needed for shorter timescales.  相似文献   
189.
For efficient and targeted management, this study demonstrates a recently developed non-point source (NPS) pollution model for a year-long estimation in the Pingqiao River Basin (22.3 km2) in China. This simple but physically reasonable model estimates NPS export in terms of land use by reflecting spatial hydrological features and source runoff measurements under different land-use types. The NPS export was separately analysed by a distributed hydrological model, a spatial hydrograph-separation technique, and an empirical water quality sub-model. Simulation results suggest that 57 890 kg of total nitrogen (TN) and 1148 kg of total phosphorus (TP) were delivered. The results, validated with observed stream concentrations, show relative errors of 23.3% for TN and 47.4% for TP. Countermeasures for urban areas (5.3% of total area) were prioritized because of the high contribution rate to TN (14.1%) and TP (26.2%) which is caused by the high degree of runoff (8.5%) and pollution source.  相似文献   
190.
The purpose of this paper is to determine uncertainty in the gauged range of the stage–gauged discharge relationship for 622 rating curves from 171 Australian Bureau of Meteorology Hydrologic Reference streamgauging Stations (HRS). Water agencies use many methods to establish rating curves. Here we adopt a consistent method across all stations and develop rating curves based on Chebyshev polynomials, and estimate uncertainties from standard regression errors in which residuals from the polynomials are adjusted to ensure they are homoscedastic and normally distributed. Uncertainty in input water level is also taken into account. The median uncertainties in mean response of the available gauged discharge relationship at median daily discharges for the HRS dataset range from +4.5 to ?4.2% (95% confidence band) and for individual gaugings from +29 to ?22% incorporating a water level uncertainty of ±4 mm. The uncertainties estimated are consistent with values estimated in Australia and elsewhere.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号