首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1167篇
  免费   293篇
  国内免费   349篇
测绘学   24篇
大气科学   357篇
地球物理   183篇
地质学   269篇
海洋学   468篇
天文学   22篇
综合类   113篇
自然地理   373篇
  2024年   10篇
  2023年   20篇
  2022年   47篇
  2021年   73篇
  2020年   59篇
  2019年   59篇
  2018年   56篇
  2017年   71篇
  2016年   50篇
  2015年   83篇
  2014年   97篇
  2013年   100篇
  2012年   64篇
  2011年   86篇
  2010年   55篇
  2009年   98篇
  2008年   83篇
  2007年   96篇
  2006年   65篇
  2005年   84篇
  2004年   64篇
  2003年   66篇
  2002年   60篇
  2001年   39篇
  2000年   42篇
  1999年   20篇
  1998年   25篇
  1997年   23篇
  1996年   16篇
  1995年   14篇
  1994年   7篇
  1993年   5篇
  1992年   7篇
  1991年   5篇
  1990年   4篇
  1989年   21篇
  1988年   17篇
  1986年   4篇
  1985年   5篇
  1984年   2篇
  1983年   4篇
  1982年   1篇
  1978年   1篇
  1977年   1篇
排序方式: 共有1809条查询结果,搜索用时 15 毫秒
11.
12.
13C/12C ratios for a number of High Arctic vascular plants (51 determinations), mosses (11), and freshwater algae (11) show considerable variation, particularly among the freshwater algae (range from-6.9 to -36.3). In some cases the stable carbon ratios on modern and fossil materials provide guidance as to whether marine waters formerly occupied a given pond or lake basin. In other cases the 13C values for algae collected along the present-day shore of a pond or lake bear no relation to the values obtained on constituents preserved within the bottom sediments, suggesting that major changes have occurred in the last few thousand years.Geological Survey of Canada Contribution No. 17291. Contribution No. 41 from the Cape Herschel Project.  相似文献   
13.
近400年来北极地区和中国气温变化的对比研究   总被引:12,自引:0,他引:12  
陈玲  张青松  朱立平  王国 《地理研究》2000,19(4):344-350
对中国和北极地区近400年来的气温变化进行了趋势分析和谱特征分析,通过对比认为,北极地区及中国基本上都有17世纪、19世纪两个寒冷期和18世纪、20世纪两个温暖期,在一定程度上说明了气候变化的全球性,但两地区气温的冷暖转化不同步。中国大部分地区(除华东、新疆、西藏区外)17、19世纪升温开始得较北极早;北极地区绝大部分站点18世纪升温较中国明显,且气温变化的区域差异较大。400aBP以来两地气温变化的周期较为一致,以130~140年、100年、80年的周期为主,说明400aBP以来气温的变化具有全球性,而且气温的变化受太阳活动的影响较大,自然因素尤其是太阳活动的影响是气候变化的主要原因。  相似文献   
14.
Influence of Arctic Oscillation on winter climate over China   总被引:2,自引:0,他引:2  
In this study the relationship between the Arctic Oscillation (AO) and climate in China in boreal winter are investigated. Correlation analysis for the last 41 years shows that the winter temperature and precipitation in China change in phase with AO. High positive correlation (>0.4) between temperature and AO appears in the northern China. High correlation coefficients between precipitation and AO cover the southern China (close to the South China Sea) and the central China (between 30o-40oN and east of ~100oE), with the values varying between +0.3 and +0.4. It is found that during the past several decades the precipitation was strongly affected by AO, but for the temperature the Siberian High plays a more important role. At the interdecadal time scale the AO has significant influence on both temperature and precipitation. Multivariate regression analysis demonstrates that AO and the Siberian High related variance in temperature and precipitation is 35% and 11% respectively. For precipitation, however the portion is rather low, implying that some other factors may be responsible for the changes in precipitation, in addition to AO and the Siberian High.  相似文献   
15.
This study used the synthetic running correlation coefficient calculation method to calculate the running correlation coefficients between the daily sea ice concentration(SIC) and sea surface air temperature(SSAT) in the Beaufort-Chukchi-East Siberian-Laptev Sea(BCEL Sea), Kara Sea and southern Chukchi Sea, with an aim to understand and measure the seasonally occurring changes in the Arctic climate system. The similarities and differences among these three regions were also discussed. There are periods in spring and autumn when the changes in SIC and SSAT are not synchronized, which is a result of the seasonally occurring variation in the climate system. These periods are referred to as transition periods. Spring transition periods can be found in all three regions, and the start and end dates of these periods have advancing trends. The multiyear average duration of the spring transition periods in the BCEL Sea, Kara Sea and southern Chukchi Sea is 74 days, 57 days and 34 days, respectively. In autumn, transition periods exist in only the southern Chukchi Sea, with a multiyear average duration of only 16 days. Moreover, in the Kara Sea, positive correlation events can be found in some years, which are caused by weather time scale processes.  相似文献   
16.
Recent climate change predictions suggest altered patterns of winter precipitation across the Arctic. It has been suggested that the presence, timing and quantity of snow all affect microbial activity, thus influencing CO2 production in soil. In this study annual and seasonal emissions of CO2 were estimated in High-Arctic Adventdalen, Svalbard, and sub-Arctic Latnjajaure, Sweden, using a new trace gas-based method to track real-time diffusion rates through the snow. Summer measurements from snow-free soils were made using a chamber-based method. Measurements were obtained from different snow regimes in order to evaluate the effect of snow depth on winter CO2 effluxes. Total annual emissions of CO2 from the sub-Arctic site (0.662–1.487 kg CO2 m–2 yr–1) were found to be more than double the emissions from the High-Arctic site (0.369–0.591 kg CO2 m–2 yr–1). There were no significant differences in winter effluxes between snow regimes or vegetation types, indicating that spatial variability in winter soil CO2 effluxes are not directly linked to snow cover thickness or soil temperatures. Total winter emissions (0.004–0.248 kg CO2 m–2) were found to be in the lower range of those previously described in the literature. Winter emissions varied in their contribution to total annual production between 1 and 18%. Artificial snow drifts shortened the snow-free period by 2 weeks and decreased the annual CO2 emission by up to 20%. This study suggests that future shifts in vegetation zones may increase soil respiration from Arctic tundra regions.  相似文献   
17.
The sea ice cover in the Arctic Ocean has been reducing and hit the low record in the summer of 2007. The anomaly was extremely large in the Pacific sector. The sea level height in the Bering Sea vs. the Greenland Sea has been analyzed and compared with the current meter data through the Bering Strait. A recent peak existed as a consequence of atmospheric circulation and is considered to contribute to inflow of the Pacific Water into the Arctic Basin. The timing of the Pacific Water inflow matched with the sea ice reduction in the Pacific sector and suggests a significant increase in heat flux. This component should be included in the model prediction for answering the question when the Arctic sea ice becomes a seasonal ice cover.  相似文献   
18.
The aim of this study is to describe ostracods from freshwater habitats in the Siberian Arctic in order to estimate the present-day relationships between the environmental setting and the geochemical properties of ostracod calcite. A special focus is on the element ratios (Mg/Ca, Sr/Ca), and the stable isotope composition (δ18O, δ13C), in both ambient waters and ostracod calcite. The most common species are Fabaeformiscandona pedata and F. harmsworthi with the highest frequency in all studied waters. Average partition coefficients D(Sr) of F. pedata are 0.33 ± 0.06 (1σ) in females, and 0.32 ± 0.06 (1σ) in males. A near 1:1 relationship of δ18O was found, with a mean shift of Δmean = 2.2‰ ± 0.5 (1σ) to heavier values in ostracod calcite of F. pedata as compared to ambient waters. The shift is not dependent on δ18Owater, and is caused by metabolic (vital) and temperature effects. Temperature-dependence is reflected in the variations of this shift. For ostracod calcite of F. pedata a vital effect as compared to inorganic calcite in equilibrium was quantified with 1.4‰. Results of this study are valuable for the palaeoenvironmental interpretation of geochemical data of fossil ostracods from permafrost deposits.  相似文献   
19.
Chinese meteorological satellite FY-1D can obtain global data from four spectral channels which include visible channel(0.58-0.68 μm) and infrared channels(0.84-0.89 μm,10.3-11.3 μm,11.5-12.5 μm).2366 snow and ice samples,2024 cloud samples,1602 land samples and 1648 water samples were selected randomly from Arctic imageries.Land and water can be detected by spectral features.Snow-ice and cloud can be classified by textural features.The classifier is Bayes classifier.By synthesizing five d ays classifying result of Arctic snow and ice cover area,complete Arctic snow and ice cover area can be obtained.The result agrees with NOAA/NESDIS IMS products up to 70%.  相似文献   
20.
Documenting morphological features of modem pollen is fundamental for the identification of fossil pollen, which will assist researchers to reconstruct the vegetation and climate of a particular geologic period. This paper presents the pollen morphol- ogy of 20 species of tundra plants from the high Arctic of Ny-Alesund, Svalbard, using light and scanning electron microscopy. The plants used in this study belong to 12 families: Brassicaceae, Caryophyllaceae, Cyperaceae, Ericaceae, Juncaceae, Papav- eraceae, Poaceae, Polygonaceae, Ranunculaceae, Rosaceae, Salicaceae, and Scrophulariaceae. Pollen grain shapes included: spher- oidal, subprolate, and prolate. Variable apertural patterns ranged from 2-syncolpate, 3-colpate, 3-(-4)-colpate, 3-(-5)-colpate, 3-colporate, 5-poroid, ulcerate, ulcus to pantoporate. Exine ornamentations comprised psilate, striate-perforate, reticulate, mi- croechinate, microechinate-perforate, scabrate, granulate, and granulate-perforate. This study provided a useful reference for com- parative studies of fossil pollen and for the reconstruction of paleovegetation and paleoclimate in Svalbard region of Arctic.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号