首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1301篇
  免费   255篇
  国内免费   645篇
测绘学   6篇
大气科学   11篇
地球物理   142篇
地质学   1809篇
海洋学   22篇
天文学   96篇
综合类   91篇
自然地理   24篇
  2024年   8篇
  2023年   27篇
  2022年   32篇
  2021年   51篇
  2020年   48篇
  2019年   65篇
  2018年   60篇
  2017年   74篇
  2016年   75篇
  2015年   62篇
  2014年   91篇
  2013年   127篇
  2012年   103篇
  2011年   92篇
  2010年   64篇
  2009年   100篇
  2008年   80篇
  2007年   89篇
  2006年   100篇
  2005年   77篇
  2004年   68篇
  2003年   77篇
  2002年   74篇
  2001年   52篇
  2000年   55篇
  1999年   55篇
  1998年   46篇
  1997年   61篇
  1996年   47篇
  1995年   46篇
  1994年   35篇
  1993年   39篇
  1992年   30篇
  1991年   18篇
  1990年   18篇
  1989年   14篇
  1988年   13篇
  1987年   8篇
  1986年   1篇
  1985年   4篇
  1984年   7篇
  1983年   1篇
  1982年   3篇
  1981年   1篇
  1975年   2篇
  1973年   1篇
排序方式: 共有2201条查询结果,搜索用时 15 毫秒
931.
There are a growing number of Early Cretaceous avian tracks and trackways from around the world, with Asia (China and Korea) having the largest reported number and diversity of Mesozoic avian traces to date, and these new discoveries are increasing the Early Cretaceous avian ichnodivesrity of Laurasia. Here we report on a new Lower Cretaceous avian track locality in the Guanshan area, Yongjing County, Gansu Province, northwest China, and on a novel ichnospecies of Koreanaornis, Koreanaornis lii ichnosp. nov. Koreananornis lii is distinct from other Koreanaornipodidae in that it possesses a consistently wider digit divarication than previously described tridactyl tracks, and possess a short, small, posteromedially oriented hallux that displays a different orientation than that seen in Koreanaornis hamanensis. The lack of linear and angular data reported for digit I traces of many avian ichnotaxa has the potential to give misleading results in multivariate statistical analyses. Also, the wide divarication of Koreanaornis lii causes the ichnotaxon to not group with other Koreanornipodidae in multivariate analyses, but with Ignotornidae. Despite the results of the analyses, K. lii is morphologically distinct from these ichnotaxa. The results demonstrate that relying solely on multivariate statistical analyses without careful examination of footprint morphology will result in erroneous ichnospecies groupings. While new vertebrate ichnotaxa discoveries from Asia may support the hypotheses of the presence of a unique and endemic Asian vertebrate ichnofauna during the Cretaceous, the recent discovery of skeletal remains interpreted to be of a volant wading bird from the Early Cretaceous, and recent reports of tracks from volant avians, could suggest that flighted avians of the shore- and wading bird ecotypes could have had a Laurasian-wide distribution during the Early Cretaceous. However, strong convergence in foot morphology of shore- and wading birds suggests that avian ichnotaxa found in both present-day Asia and North America may have been made by birds endemic to eastern and western Laurasia during the Early Cretaceous.  相似文献   
932.
933.
One of the most relevant characteristics of the Pennsylvanian shallow-water carbonates of the Amazonas Basin is its diverse and well preserved invertebrate fossiliferous assemblages. In order to better understand the origin of these fossil concentrations, taphonomic data were obtained along well exposed areas of the uppermost part of the Monte Alegre Formation and basal part of the Itaituba Formation, which, based on conodonts, fusulinids and palynomorphs is of Atokan age. The taphonomic data focused on invertebrate organisms were supported by petrographic analysis. The understanding of the stacking pattern of the strata in the studied section allowed the identification of five type taphofacies, which contributed in the development of regional palaeoecological models, expressed as block-diagrams. These characterize the distribution of the environmental parameters, the composition of the faunal associations and the distribution and amplitude of the taphonomic processes that created the taphonomic signatures of the bioclastic elements throughout the supratidal to lower intertidal/deep subtidal depositional environments pertinent to the studied depositional environment. The regional palaeoecological models here presented are related to the particularities of the depositional environments of the studied rocks and are exclusive for the characterization of this intracratonic basin set influenced by high frequency climatic variations. Lithofacies, biofacies and taphofacies associations also reflect depositional conditions pertinent to the studied regional context, differing from the elements observed in modern intracratonic contexts analogous to the one studied, from different sedimentary basins around the world. Therefore, invertebrate taphonomy, supported by the analysis of sedimentary facies, fulfills the purposes recommended in this work, demonstrating its potential as a tool for palaeoecological analysis in the Pennsylvanian outcropping section in the southern platform of the Amazonas Basin.  相似文献   
934.
The Vazante Group consists of Precambrian carbonate-dominated platform deposits that extend along more than 300 km in the external zone of the Brasilia Fold Belt of the São Francisco Basin in east central Brazil. The sequence is about 4.8 km thick and contains a preserved glaciomarine diamictite unit (containing dropstone) at the top and a lower diamictite unit at the bottom. Previous C- and Sr-isotope profiles suggested the correlation of the upper diamictite unit with the “Sturtian” glacial event (ca. 750–643 Ma). However, new Re–Os isotope data from the shales associated with the upper diamictites yield radiometric age estimates between 993 ± 46 and 1100 ± 77 Ma. U–Pb measurements on a suite of clear euhedral zircon crystals that were separated from the same shales associated with the upper diamictite and from the arkosic sandstone above the lower diamictite yield ages as young as 988 ± 15 and 1000 ± 25 Ma, respectively. Based on the Re–Os and U–Pb ages, the best age estimate of the Vazante Group is constrained to be 1000–1100 Ma and thus the two diamictite units are not correlative with the Sturtian glaciation(s) but most likely are records of glacial events that occurred during the late Mesoproterozoic.  相似文献   
935.
The Neoproterozoic Ikorongo Group, which lies unconformably on the late Archaean Nyanzian Supergroup of the Tanzania Craton, is comprised of conglomerates, quartzites, shales, siltstones, red sandstones with rare flagstones and gritstones and is regionally subdivided into four litho-stratigraphic units namely the Makobo, Kinenge, Sumuji and Masati Formations.We report geochemical data for the mudrocks (i.e., shales and siltstones) from the Ikorongo basin in an attempt to constrain their provenance and source rock weathering. These mudrocks are compositionally similar to PAAS and PS indicating derivation from mixed mafic–felsic sources. However, the siltstones show depletion in the transition elements (Cr, Ni, Cu, Sc and V) and attest to a more felsic protolith than those for PAAS and PS. The Chemical Index of Alteration (CIA: 52–82) reveal a moderately weathered protolith for the mudrocks. The consistent REE patterns with LREE-enriched and HREE-depleted patterns ((La/Yb)CN = 7.3–38.3) coupled with negative Eu anomalies (Eu/Eu* = 0.71 on average), which characteristics are similar to the average PAAS and PS, illustrate cratonic sources that formed by intra-crustal differentiation.Geochemical considerations and palaeocurrent indications suggest that the provenance of the Ikorongo Group include high-Mg basaltic-andesites, dacites, rhyolites and granitoids from the Neoarchaean Musoma-Mara Greenstone Belt to the north of the Ikorongo basin. Mass balance calculations suggest relative contributions of 47%, 42% and 11% from granitoids, high-magnesium basaltic-andesites and dacites, respectively to the detritus that formed the shales. Corresponding contributions to the siltstones detritus are 53%, 43% and 4%.  相似文献   
936.
TOHRU OHTA 《Sedimentology》2008,55(6):1687-1701
The present study examines the provenance of the Jurassic Ashikita Group distributed in south‐west Japan, which is composed of the Idenohana, Kyodomari and Sakamoto Formations. Two geochemical diagrams for provenance analysis were utilized, which incorporate full consideration of compositional modifications resulting from weathering (MFW diagram) and hydraulic sorting processes (SiO2/Al2O3–Na2O/K2O diagram). The MFW diagram delineates weathering trends of sedimentary rocks and allows estimation of the original source rock composition by tracing the weathering trends backwards to an unweathered domain. Weathering trends of the Idenohana and Kyodomari Formations extend backward to the domain of intermediate and felsic igneous rocks. In contrast, sediments of the Sakamoto Formation do not fit into a linear weathering trend, indicating that the source rock cannot be approximated to igneous rocks. On the SiO2/Al2O3–Na2O/K2O diagram, sediments are organized into compositional trends, in which the range reflects compositional variations induced by the hydraulic sorting effect. On this diagram, sediments derived from the igneous and recycled sedimentary provenances can be distinguished by reading the inclination of the trend. By utilizing this principle, source rocks of the Idenohana and Kyodomari Formations are interpreted as igneous rocks and those of the Sakamoto Formation are interpreted as recycled sedimentary rocks. Therefore, these diagrams concurrently estimate the source rock composition through quantifying and adjusting the weathering and sorting effects, and reveal a systematic transition in the provenance of the Ashikita Group. The Idenohana and Kyodomari Formations were supplied chiefly from an igneous provenance, which shifted from intermediate to felsic compositions in stratigraphic order. Whereas, sediments of the Sakamoto Formation were sourced primarily from a recycled sedimentary provenance.  相似文献   
937.
The Rb-Sr and U-Pb systematics are studied in carbonate deposits of the Satka and Suran formations corresponding to middle horizons of the Lower Riphean Burzyan Group in the Taratash and Yamantau anticlinoria, respectively, the southern Urals. The least altered rock samples retaining the 87Sr/86Sr ratio of sedimentation basin have been selected for analysis using the original method of leaching the secondary carbonate phases and based on strict geochemical criteria of the retentivity (Mn/Sr < 0.2, Fe/Sr < 5 and Mg/Ca < 0.024). The stepwise dissolution in 0.5 N HBr has been used to enrich samples in the primary carbonate phase before the Pb-Pb dating. Three (L-4 to L-6) of seven consecutive carbonate fractions obtained by the step-wise leaching are most enriched in the primary carbonate (in terms of the U-Pb systematics). In the 206Pb/204Pb-207Pb/204Pb diagram, data points of these fractions plot along an isochron determining age of 1550 ± 30 Ma (MSWD = 0.7) for the upper member of the Satka Formation. The initial 87Sr/86Sr ratio in the least altered limestones of this formation is within the range of 0.70460–0.70480. Generalization of the Sr isotopic data published for the Riphean carbonates from different continents showed that 1650–1350 Ma ago the 87Sr/86Sr ratio in the world ocean was low, slightly ranging from 0.70456 to 0.70494 and suggesting the prevalent impact of mantle flux.  相似文献   
938.
The major, trace and rare earth element (REE) composition of Late Archean manganese, ferromanganese and iron ores from the Iron Ore Group (IOG) in Orissa, east India, was examined. Manganese deposits, occurring above the iron formations of the IOG, display massive, rhythmically laminated or botryoidal textures. The ores are composed primarily of iron and manganese, and are low in other major and trace elements such as SiO2, Al2O3, P2O5 and Zr. The total REE concentration is as high as 975 ppm in manganese ores, whereas concentrations as high as 345 ppm and 211 ppm are found in ferromanganese and iron ores, respectively. Heavy REE (HREE) enrichments, negative Ce anomalies and positive Eu anomalies were observed in post‐Archean average shale (PAAS)‐normalized REE patterns of the IOG manganese and ferromanganese ores. The stratiform or stratabound shapes of ore bodies within the shale horizon, and REE geochemistry, suggest that the manganese and ferromanganese ores of the IOG were formed by iron and/or manganese precipitation from a submarine, hydrothermal solution under oxic conditions that occurred as a result of mixing with oxic seawater. While HREE concentrations in the Late Archean manganese and ferromanganese ores in the IOG are slightly less than those of the Phanerozoic ferromanganese ores in Japan, HREE resources in the IOG manganese deposits appear to be two orders of magnitude higher because of the large size of the deposits. Although a reliable, economic concentration technique for HREE from manganese and ferromanganese ores has not yet been developed, those ores could be an important future source of HREE.  相似文献   
939.
地球化学分析结果显示,宽坪群变基性火山岩和斜长角闪岩SiO2含量均小于53%,TiO2的含量分别是0.87%~2.03%和0.92%~2.12%,MgO含量较低(Mg#=29~49),原岩类型为亚碱性TH系列玄武质岩石。宽坪群变基性火山岩和斜长角闪岩的轻稀土、重稀土元素无明显分异,LREE呈现亏损—略富集,稀土元素配分模式呈平坦型,与E-MORB的配分模式相似。相对于N-MORB,宽坪群变基性火山岩和斜长角闪岩的大离子亲石元素(LILE, 如Sr、K、Rb和Ba)轻度富集,高场强元素(HFSE,如Ta、Nb、Zr、Hf、Ti等)既不富集也不亏损, 显示与E-MORB相类似的地球化学特征。宽坪群变基性火山岩和斜长角闪岩的初始锶比值比较分散,但其初始钕比值(143Nd/144Nd)(t)比较集中和均一,分别为0.511962~0.512192和0.512028~0.512157,??Nd(t)值均为正值,分别是+5.7~+10.2和+7.0~+9.5,表明2类岩石来自轻稀土和大离子亲石元素略呈亏损的源区。SHRIMP锆石U-Pb年代分析揭示,宽坪群变基性火山岩形成于晚新元古代Ediacaran期(611Ma±13Ma),较老的残余晶核锆石可能是岩浆活动过程中捕获古老地壳成分的记录。黑云母40Ar/39Ar热年代学分析表明,宽坪群原岩变质时代为石炭纪Serpukhovian期(319.1Ma±3.6Ma)。认为宽坪群中的变铁镁岩块/片形成于晚新元古代被动陆缘裂谷洋盆,是华北陆块南缘大陆裂解作用的产物。  相似文献   
940.
李广旭  曹汇  王达  许翠萍 《地质学报》2016,90(11):3246-3258
胶北地块粉子山群和荆山群是华北克拉通的重要组成部分,其变质变形作用过程是全面认识华北克拉通性质与演化的关键。前人对粉子山群和荆山群变质变形年代研究的测试对象主要为锆石,报道的年代学数据多集中于1.8~1.9Ga,认为变质变形作用的时代为古元古代。本文通过对采集自胶北粉子山群和荆山群的2个石榴云母片岩和2个云母片岩样品中独居石及金红石的U-Pb同位素年代测定,揭示了胶北粉子山群和荆山群不仅经历了古元古代(1869±16~1864±14 Ma)变质事件的改造,而且还经历了三叠纪(215.1±4.2~217.8±6.3Ma)变质变形事件的叠加。通过金红石中Zr温度计计算得出215.1±4.2 Ma,217.7±2.7 Ma和217.8±6.3 Ma的U-Pb年龄对应温度分别为:658℃,667℃和680℃。表明胶北地块部分卷入了三叠纪苏鲁-大别超高压变质带的俯冲-碰撞造山过程,并遭受了角闪岩相变质作用叠加。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号