首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   74篇
  免费   8篇
  国内免费   38篇
测绘学   1篇
地球物理   9篇
地质学   98篇
海洋学   5篇
综合类   1篇
自然地理   6篇
  2023年   4篇
  2022年   3篇
  2021年   5篇
  2020年   6篇
  2019年   3篇
  2018年   6篇
  2017年   3篇
  2016年   5篇
  2015年   3篇
  2014年   10篇
  2013年   12篇
  2012年   3篇
  2011年   4篇
  2010年   2篇
  2009年   9篇
  2008年   6篇
  2007年   4篇
  2006年   5篇
  2005年   4篇
  2004年   10篇
  2003年   1篇
  2002年   2篇
  2001年   1篇
  1995年   3篇
  1994年   3篇
  1991年   1篇
  1988年   1篇
  1986年   1篇
排序方式: 共有120条查询结果,搜索用时 31 毫秒
21.
The Durkan Complex is a tectonic element of the Makran Accretionary Prism (SE Iran) that includes fragments of Late Cretaceous seamounts. In this paper, the results of map- to micro-scale structural studies of the western Durkan Complex are presented with the aim to describe its structural and tectono-metamorphic evolution. The Durkan Complex consists of several tectonic units bordered by mainly NNW-striking thrusts. Three main deformation phases (D1, D2, and D3) are distinguished and likely occurred from the Late Cretaceous to the Miocene–Pliocene. D1 is characterized by sub-isoclinal to close and W-verging folds associated with an axial plane foliation and shear zone along the fold limbs. This phase records the accretion of fragments of the seamount within the Makran at blueschist facies metamorphic conditions (160–300 °C and 0.6 – 1.2 GPa). D2 is characterized by open to close folds with sub-horizontal axial plane that likely developed during the exhumation of previously accreted seamount fragments. An upper Paleocene – Eocene siliciclastic succession unconformably sealed the D1 and D2 structures and is, in turn, deformed by W-verging thrust faults typical of D3. The latter likely testifies for a Miocene – Pliocene tectonic reworking of the accreted seamount fragments with the activation of out of sequence thrusts. Our results shed light on the mechanism of accretion of seamount materials in the accretionary prisms, suggesting that seamount slope successions favour the localization and propagation of the basal décollement. This study further confirms that the physiography of the subducting plates plays a significant role in the tectonic evolution of the subduction complexes.  相似文献   
22.
分布在青藏高原北缘的阿尔金-祁连-柴北缘早古生代造山系被认为是原特提斯构造域最北部的构造拼合体。与其北侧具有长期增生历史的中亚造山系相比,特提斯造山拼合体被认为是各种来自冈瓦纳大陆北部大陆块体相互碰撞的产物。然而,与典型的阿尔卑斯和喜马拉雅碰撞造山带相比,阿尔金-祁连-柴北缘早古生代造山系包括有大量蛇绿岩、弧岩浆杂岩、俯冲-增生杂岩等,因此一些学者认为青藏高原北部的早古生代造山系为沿塔里木和华北克拉通边界向南逐渐增生的增生型造山带。但是,增生造山模式又很难解释南阿尔金-柴北缘地区普遍存在的与大陆俯冲有关的UHP变质岩、广泛分布的巴罗式变质作用和相关的岩浆作用,以及与碰撞造山有关的变形构造等。在本文中,通过对已有研究资料的综合总结,结合一些新的研究资料,我们提出在青藏高原东北缘的阿尔金-祁连-柴北缘造山系中,早古生代时期存在两种不同类型的造山作用,即增生和碰撞造山作用,其主要标志是北祁连-北阿尔金的HP/LT变质带、蛇绿混杂岩及与洋壳俯冲有关的构造岩浆作用,以及分布在柴北缘-南阿尔金与大陆俯冲和陆陆碰撞有关的UHP变质带、区域巴罗式变质作用、深熔作用、相关的岩浆活动及伸展垮塌作用等,并建立了一个反映原特提斯洋俯冲、增生、闭合及碰撞造山作用的构造模式。  相似文献   
23.
西秦岭楔的构造属性及其增生造山过程   总被引:10,自引:17,他引:10  
西秦岭楔是叠置于早古生代造山作用基础上形成的并插入祁连和昆仑早古生代造山带内部的楔形地质体,以大面积出露三叠系并发育多条蛇绿混杂岩带、大型韧性剪切带、中生代火山-岩浆作用和斑岩-矽卡岩型矿床为典型特征,具有增生造山作用的典型特征。这些蛇绿混杂岩带和岛弧钙碱性火山-岩浆岩的形成时代均具有向南逐渐变年轻的空间演化特征,显示了特提斯洋演化过程中海沟具有向南撤退的基本特征。砂岩碎屑组成以及源区特征研究结果表明,西秦岭楔三叠系形成于活动大陆边缘,其碎屑沉积物来自于古特提斯洋北侧的增生杂岩及岛弧。丰富的岛弧钙碱性火山-岩浆岩和沉积组合以及赋存的斑岩-矽卡岩型矿床,均与东昆仑及南秦岭相一致,呈现出相似的岩石组合类型以及岩石地球化学和同位素地球化学特征。这些事实表明,三叠纪时期,东昆仑、西秦岭以及祁连造山带是一个有机整体,自西向东存在一条三叠纪增生岩浆弧。锆石Hf同位素及岩石地球化学成分结果则表明,该增生岩浆弧部分岩浆来自于俯冲增生杂岩的部分熔融。  相似文献   
24.
Permian greenstones in the Jurassic Mino–Tamba accretionary complex, southwest Japan, are divided into three distinct series on the basis of their geological occurrence, mineralogy, and geochemistry. A low-Ti series (LTS) is associated with Lower Permian chert and limestone, and is the most voluminous of the three series. The LTS shows slightly more enriched geochemical and isotopic characteristics than MORB. A transition series (TS) is mainly associated with Lower Permian chert, and has more enriched geochemical signatures than MORB. Its isotopic characteristics are divided into enriched and depleted types. A high-Ti series (HTS) occurs as sills and hyaloclastites within Middle Permian chert and as dikes intruding the TS. Some HTS rocks have high MgO contents. The HTS is characterized by enrichment in incompatible trace elements and an isotopic composition comparable to HIMU-type basalt. The geochemistry of the voluminous LTS is similar to that of the oceanic basalt series of the Kerguelen plateau, suggesting production by partial melting of a shallow mantle plume head below thick oceanic lithosphere in Early Permian time. We infer that the TS formed simultaneously at the margins of the mantle plume head. In contrast, the HTS may have resulted from partial melting of a deep mantle plume tail in Middle Permian time. Permian greenstones in the Mino–Tamba belt may have thus formed by superplume activity in an intra-oceanic setting. Given the presence of two known contemporary continental flood basalt provinces (Siberia and Emeishan) and some accreted oceanic plateau basalts, the vast magmatism of the Mino–Tamba oceanic plateau suggests a large-scale superplume pulse in Permian time. Accretion of oceanic plateaux may have played an important role in the growth of continental margins and island arcs in Japan and elsewhere in the circum-Pacific region.  相似文献   
25.
台湾增生楔天然气水合物的地震特征   总被引:4,自引:1,他引:4  
通过对南海973航次在该区域的多道地震剖面的分析,结合该区域的地质背景,认为台湾增生楔具有天然气水合物存在和分布的地球物理特征,在地震剖面上出观海底反射层(BSR)、振幅空白(BZ)、极性反转等地震识别标志。BSR所在区域位于南海向菲律宾海板块俯冲的增生楔上,南海新生代沉积不仅提供了富含有机质的丰富物源,而且类似于活动大陆边缘的构造体系又为天然气水合物的形成提供了良好的条件。  相似文献   
26.
Based on a new quantitative analysis of sidescan sonar data combined with coring, we propose a revised model for the origin for Mediterranean Ridge mud volcanism. Image analysis techniques are used to produce a synthetic and objective map of recent mud flows covering a 640 × 700 km2 area, which represents more than half of the entire Mediterranean Ridge mud belt. We identify 215 mud flows, extruded during the last 37,000–60,000 years. This time period corresponds to the limit of penetration of the sonar, that we evaluate through geoacoustic modeling of the backscattered signal returned by the mud breccia-hemipelagites contact, and calibrate by coring. We show that during this period, at least 96% of the mud volume has been extruded at the Mediterranean Ridge-Hellenic backstop contact, the remaining being scattered over the prism. We suggest that the source is a Messinian (5–6 Ma) mud reservoir that remained close to the backstop contact, at variance with the classical transport-through-the-wedge model. A revised mud budget indicates that steady-state input is not needed. We propose that the source layer was deposited in deep and narrow pre-Messinian basins, sealed by Messinian evaporites, and finally inverted in post-Messinian times. Onset of motion of the Anatolia-Aegea microplate in the Pliocene resulted in change from slow to fast convergence, triggering shear partitioning at the edges of the backstop and basin inversion. Mud volcanism initiation is probably coeval with the latest events of this kinematic re-organization, i.e. opening of the Corinth Gulf and activation of the Kephalonia fault around 1–2 Ma.  相似文献   
27.
《China Geology》2023,6(2):322-337
Accretionary complex study provides important knowledge on the subduction and the geodynamic processes of the oceanic plate, which represents the ancient ocean basin extinction location. Nevertheless, there exist many disputes on the age, material source, and tectonic attribute of the Lancang Group, located in Southwest Yunnan, China. In this paper, the LA-ICP-MS detrital zircon U–Pb chronology of nine metamorphic rocks in the Lancang Group was carried out. The U–Pb ages of the three detrital zircons mainly range from 590–550 Ma, 980–910 Ma, and 1150–1490 Ma, with the youngest detrital zircons having a peak age of about 560 Ma. The U–Pb ages of the six detrital zircons mainly range from 440–460 Ma and 980–910 Ma, and the youngest detrital zircon has a peak age of about 445 Ma. In the Lancang Group, metamorphic acidic volcanic rocks, basic volcanic rocks, intermediate-acid intrusive rocks, and high-pressure metamorphic rocks are exposed in the form of tectonic lens in schist, rendering typical melange structural characteristics of “block + matrix”. Considering regional deformation and chronology, material composition characteristics, and the previous data, this study thinks the Lancang Group may be an early Paleozoic tectonic accretionary complex formed by the eastward subduction of the Changning-Menglian Proto-Tethys Ocean, which provides an important constraint for the Tethys evolution.©2023 China Geology Editorial Office.  相似文献   
28.
29.
中国大别-苏鲁造山带为大陆板块俯冲形成的碰撞造山带,该带北缘和内部产有原岩时代为新元古代-晚古生代的浅变质岩。这些浅变质岩对应于扬子板块北缘前寒武变质基底和扬子板块北缘古生代大陆架沉积物,形成过程于印支期扬子板块向北俯冲过程中的刮削作用密切相关,与大洋板块俯冲过程中刮削形成的加积楔具有类似的动力学过程。对大别-苏鲁造山带浅变质岩的深入研究,不仅有助于揭示大陆板块俯冲过程中高压-超高压岩石形成与折返过程,而且确定了扬子板块与华北板块之间的缝合线位置位于大别造山带北淮阳带的北部和苏鲁造山带的五莲-蓬莱群的北侧。  相似文献   
30.
D.R. Gray  D.A. Foster   《Tectonophysics》2004,385(1-4):181-210
Structural thickening of the Torlesse accretionary wedge via juxtaposition of arc-derived greywackes (Caples Terrane) and quartzo-feldspathic greywackes (Torlesse Terrane) at 120 Ma formed a belt of schist (Otago Schist) with distinct mica fabrics defining (i) schistosity, (ii) transposition layering and (iii) crenulation cleavage. Thirty-five 40Ar/39Ar step-heating experiments on these micas and whole rock micaceous fabrics from the Otago Schist have shown that the main metamorphism and deformation occurred between 160 and 140 Ma (recorded in the low grade flanks) through 120 Ma (shear zone deformation). This was followed either by very gradual cooling or no cooling until about 110 Ma, with some form of extensional (tectonic) exhumation and cooling of the high-grade metamorphic core between 109 and 100 Ma. Major shear zones separating the low-grade and high-grade parts of the schist define regions of separate and distinct apparent age groupings that underwent different thermo-tectonic histories. Apparent ages on the low-grade north flank (hanging wall to the Hyde-Macraes and Rise and Shine Shear Zones) range from 145 to 159 Ma (n=8), whereas on the low-grade south flank (hanging wall to the Remarkables Shear Zone or Caples Terrane) range from 144 to 156 Ma (n=5). Most of these samples show complex age spectra caused by mixing between radiogenic argon released from neocrystalline metamorphic mica and lesser detrital mica. Several of the hanging wall samples with ages of 144–147 Ma show no evidence for detrital contamination in thin section or in the form of the age spectra. Apparent ages from the high-grade metamorphic core (garnet–biotite–albite zone) range from 131 to 106 Ma (n=13) with a strong grouping 113–109 Ma (n=7) in the immediate footwall to the major Remarkables Shear Zone. Most of the age spectra from within the core of the schist belt yield complex age spectra that we interpret to be the result of prolonged residence within the argon partial retention interval for white mica (430–330 °C). Samples with apparent ages of about 110–109 Ma tend to give concordant plateaux suggesting more rapid cooling. The youngest and most disturbed age spectra come from within the ‘Alpine chlorite overprint’ zone where samples with strong development of crenulation cleavage gave ages 85–107 and 101 Ma, due to partial resetting during retrogression. The bounding Remarkables Shear zone shows resetting effects due to dynamic recrystallization with apparent ages of 127–122 Ma, whereas overprinting shear zones within the core of the schist show apparent ages of 112–109 and 106 Ma. These data when linked with extensional exhumation of high-grade rocks in other parts of New Zealand indicate that the East Gondwana margin underwent significant extension in the 110–90 Ma period.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号