首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   814篇
  免费   153篇
  国内免费   385篇
测绘学   28篇
大气科学   1篇
地球物理   181篇
地质学   1060篇
海洋学   38篇
天文学   7篇
综合类   21篇
自然地理   16篇
  2024年   6篇
  2023年   20篇
  2022年   47篇
  2021年   31篇
  2020年   57篇
  2019年   51篇
  2018年   52篇
  2017年   62篇
  2016年   47篇
  2015年   46篇
  2014年   55篇
  2013年   54篇
  2012年   64篇
  2011年   32篇
  2010年   34篇
  2009年   72篇
  2008年   64篇
  2007年   46篇
  2006年   61篇
  2005年   36篇
  2004年   58篇
  2003年   40篇
  2002年   49篇
  2001年   28篇
  2000年   31篇
  1999年   24篇
  1998年   29篇
  1997年   27篇
  1996年   21篇
  1995年   28篇
  1994年   20篇
  1993年   17篇
  1992年   8篇
  1991年   7篇
  1990年   4篇
  1989年   8篇
  1988年   8篇
  1987年   3篇
  1986年   2篇
  1985年   1篇
  1983年   1篇
  1982年   1篇
排序方式: 共有1352条查询结果,搜索用时 31 毫秒
711.
The Jurassic–Early Cretaceous Yilashan mafic–ultramafic complex is located in the middle part of the Bangong–Nujiang suture zone, central Tibet. It features a mantle sequence composed of peridotites and a crustal sequence composed of cumulate peridotites and gabbros that are intruded by diabases with some basalts. This article presents new whole-rock geochemical and geochronological data for peridotites, gabbros, diabases and basalts to revisit the petrogenesis and tectonic setting of the Yilashan mafic–ultramafic complex. Zircon laser ablation inductively coupled plasma mass spectrometer (LA-ICP-MS) U–Pb ages of three diabase samples are 169.6 ± 3.3 Ma, 132.5 ± 2.5 Ma, and 133.6 ± 4.9 Ma, respectively. These ages together with previous studies indicate that the Yilashan mafic–ultramafic complex probably formed during the Jurassic–Early Cretaceous. The peridotites exhibit nearly U-shaped REE patterns and are distinct from abyssal peridotites. The diabase and basalt samples show arc features with selective enrichment in light rare earth elements (LREE) and large ion lithophile elements (LILEs; e.g. Rb, U, and Sr) and depletion in high field strength elements (HFSEs; e.g. Nb, Ta, and Ti). The gabbro samples display cumulate features with selective enrichment in LILEs (e.g. Rb, Ba, and Sr) but depletion in LREEs and HFSEs (e.g. Nb, Zr, and Ti). Combing the positive εNd(t) values (+6.1 to +10.0) and negative zircon εHf(t) values (–16.5 to –11.7 and –13.6 to –0.4) with older Hf model ages for the mafic rocks, these signatures suggest that the Yilashan mafic and ultramafic rocks likely originated from an ancient lithospheric mantle source with the addition of asthenospheric mantle materials and subducted fluids coupled with limited crustal contamination in a continental arc setting as a result of the southward subduction of the Bangong–Nujiang Tethys Ocean beneath the Lhasa terrane during the Jurassic–Early Cretaceous.  相似文献   
712.
齐天骄 《地质与勘探》2018,54(2):274-285
新疆昭苏卡拉盖雷铜(金)矿床位于中天山北缘构造带西段,矿区主要出露一套基性、中-酸性的亚碱性火山岩。本次研究对其中的流纹岩、安山岩、霏细岩等酸性火山岩的锆石U-Pb测年结果为451~437Ma(前人对研究区的地质调查显示火山岩归属下石炭统大哈拉军山组),为晚奥陶世。地球化学测试结果显示主要呈高钾(2.26%~9.27%)、高铝(11.77%~16.66%)及亚碱性的特征,稀土元素中Eu呈现不同程度的负异常且轻稀土相对富集,微量元素特征显示主要富集Ba、Tu、U等大离子亲石元素,亏损Ta、Nb、Sr等元素。综合分析认为岩石具有大陆岛弧性质,岩浆主要经历了结晶分异作用,可能形成于造山后期的伸展背景下。  相似文献   
713.
王敏  王居里  胡洋  王建其 《岩石学报》2018,34(3):618-636
谢米斯台地区位于新疆西准噶尔北部,该地区中酸性岩浆活动强烈。本文对谢米斯台地区乌兰萨拉岩体进行了地质、地球化学、年代学及全岩Sr-Nd和锆石Hf同位素研究。结果表明,乌兰萨拉岩体是一个由碱长花岗岩和花岗闪长岩组成的复式岩体。碱长花岗岩形成时代为晚志留世(422.7±2.0Ma),岩石高硅、富碱,属于准铝质-弱过铝质高钾钙碱性花岗岩;球粒陨石标准化配分模式图显示"V"字型配分样式,Eu负异常强烈,相对富集Ga、K、Rb、Th、U和Pb,亏损Ba、Sr、P、Ti、Cr和Ni等;岩石具有低(~(87)Sr/~(86)Sr)i值(0.7017~0.7038),正的ε_(Nd)(t)值(+4.49~+6.58)和锆石ε_(Hf)(t)值(+10.0~+14.2),Hf同位素模式年龄(t_(DM2))为500~771Ma。花岗闪长岩形成时代为早泥盆世(411.7±1.7Ma),属于准铝质,高钾钙碱性-钾玄岩系列花岗岩;球粒陨石标准化配分模式图显示右倾型配分样式,无明显Eu异常,相对富集LREE、LILE(Rb、Ba、K)、Th、U和Pb,亏损Nb、Ta、P和Ti等;岩石具有低的(~(87)Sr/~(86)Sr)i值(0.7041~0.7046),正的ε_(Nd)(t)值(+1.66~+3.87)和锆石ε_(Hf)(t)值(+4.4~+13.9),Hf同位素模式年龄(t_(DM2))为516~1120Ma,岩石Nd同位素和锆石Hf同位素出现一定程度的解耦。综合研究认为,乌兰萨拉岩体碱长花岗岩属A_2型花岗岩,花岗闪长岩属I型花岗岩,两者都是由新生下地壳发生部分熔融而形成,前者经历了一定程度的分离结晶作用,后者受到亏损玄武质岩浆(俯冲板片脱水交代地幔楔产生的上涌岩浆)的底侵,它们均形成于陆缘弧环境。  相似文献   
714.
塔里木溢流玄武岩省的巨型长英质热火山碎屑流爆发记录   总被引:1,自引:1,他引:0  
田伟  王磊  潘路  弓明月 《岩石学报》2018,34(1):63-74
在塔里木盆地西北缘的柯坪地区二叠系库普库兹满组和开派兹雷克组玄武岩之间发现厚层长英质火山碎屑岩层序。该层序包括可见含交错层理的空落火山灰层、三层含增生火山砾的火山灰、熔结凝灰岩和再沉积熔结凝灰岩。层序下部为与其准同时喷发的玄武质火山碎屑岩和玄武质熔岩流。利用锆石U-Pb法确定熔结凝灰岩层的喷发年龄为290.9±1.3Ma(MSWD=1.12),该年龄限定了库普库兹满组玄武岩喷发的截止时间。长英质火山碎屑岩层序中的增生火山砾由粒度250μm的长英质玻屑组成,且长宽比均1.5。根据形貌、结构和岩相学特征,将增生火山砾分为三类,分别对应热火山碎屑流从起始(TypeⅡ,coated ash pellet)到极盛(TypeⅠ,accretionary lapillus)再逐渐衰弱(TypeⅢ,ash pellet)的过程。由于喷发规模巨大,该火山层序很可能广泛分布于盆地内,可能是确定全盆地溢流玄武岩喷发时限的一个关键标志层。  相似文献   
715.
雄村矿区位于西藏冈底斯斑岩铜矿带西段,目前在该矿区发现了Ⅰ、Ⅱ、Ⅲ号斑岩型铜金矿体。文章通过Ⅱ号矿体硫、铅同位素研究,获得Ⅱ号矿体金属硫化物的δ~(34)S值为-1.6‰~-0.6‰,平均值-1.30‰,总硫同位素值(δ~(34)S_(ΣS))为0.99‰,与含矿斑岩的硫同位素组成(-2.1‰~+1‰,平均0.06‰)一致,均落入幔源硫范围,表明硫主要来自岩浆。含矿斑岩和金属硫化物的铅同位素组成~(206)Pb/~(204)Pb、~(207)Pb/~(204)Pb、~(208)Pb/~(204)Pb分别为18.460~18.560、15.586~15.622、38.603~38.727和17.972~18.425、15.528~15.593、38.024~38.489,两者的铅同位素组成基本一致,变化范围小,表明两者具有相同的来源。所有样品的铅同位素μ值为9.34~9.49,显示幔源特征,综合源区判别图解认为铅主要来源于幔源,有少量俯冲沉积物加入,矿床形成于与洋壳俯冲消减作用有关的岛弧构造环境。  相似文献   
716.
北山造山带位于中亚造山带最南缘,为多期岛弧、蛇绿混杂岩拼贴而成的增生型造山带;晚古生代,北山造山带的构造活动引发强烈的花岗质岩浆活动,伴随有广泛的钨(钼)成矿作用;本文对北山南带花牛山岛弧三个典型含钨花岗岩体:盘陀山、鹰嘴红山及玉山岩体进行详细的锆石U-Pb年代学、全岩地球化学研究。SIMS锆石U-Pb定年结果表明该区成矿花岗岩分为两个侵入期次:(1)晚志留世月牙山-洗肠井蛇绿混杂岩南段出露花岗岩,其中,盘陀山二长花岗岩422.0±1.5Ma;盘陀山钾长花岗岩417.0±1.7Ma;鹰咀红山钾长花岗岩424.0±1.3Ma;(2)晚二叠世柳园蛇绿混杂带北侧玉山花岗岩体,定年结果为280.8±3.0Ma。岩石地球化学研究表明盘陀山-鹰嘴红山花岗岩带为过铝质S型花岗岩,玉山岩体为A型花岗岩。岩体稀土含量较高,具右倾型稀土配分模式,LREE分异强烈,HREE分异不明显,样品Eu亏损强烈。原始地幔标准化蛛网图中总体显示较为一致的分布模式,大离子亲石元素Ba、Sr呈现明显负异常,富集Th、U、Pb、Zr、Hf等元素而亏损高场强元素Ta、Nb、Ti、P。结合晚古生代北山构造演化过程,推断国庆-鹰嘴红山钨矿为公婆泉岛弧与花牛山岛弧碰撞阶段形成,而玉山钨矿床为晚华力西期弧后伸展构造背景的产物。  相似文献   
717.
晋俊岭  郑贵洲  任东宇  王云 《测绘科学》2015,40(2):18-21,17
为了避免大椭圆弧长算法中需要对球面方位角和极距角进行繁琐的象限判断问题,该文通过空间向量分析和椭球几何关系推导,给出了一种计算简洁、具有通用性的截面椭圆弧长算法。算例分析表明,该算法可以满足椭球面上两点间大地距离计算的应用需要,当大地距离小于2000km时,求得的截面椭圆弧长与较严密公式求得的大地线长的误差仅为厘米级。  相似文献   
718.
Ijen Volcanic Complex (IVC) in East Java, Indonesia is situatedon thickened oceanic crust within the Quaternary volcanic frontof the Sunda arc. The 20 km wide calderas complex contains around22 post-caldera eruptive centres, positioned either around thecaldera-rim (CR) or along a roughly NE–SW lineament insidethe caldera (IC). The CR and IC lavas exhibit separate differentiationhistories. Major element and trace element modelling shows thatfractionation of olivine, clinopyroxene, Fe–Ti oxide ±plagioclase is important in the CR group, whereas plagioclaseis the dominant fractionating mineral in the same assemblagefor the IC group. Spatial controls on magmatic differentiationhighlight important structural controls on magma storage andascent at IVC. Mantle-like 18O values, restricted ranges inSr, Nd and Hf isotope ratios, and a lack of correlation betweenisotope ratios and indices of differentiation in IVC lavas areconsistent with magmatic evolution through fractional crystallization.Furthermore, the small ranges in isotopic ratios throughoutthe complex indicate little heterogeneity in the mantle. IVClavas possess higher 176Hf/177Hf and 143Nd/144Nd isotope ratiosthan other volcanoes of Java, representing the least contaminatedsource so far analysed and, therefore, give the best estimateyet of the pre-subduction mantle wedge isotopic compositionbeneath Java. Trace element and radiogenic isotope data areconsistent with a two-stage, three-component petrogenetic modelfor IVC, whereby an Indian-type mid-ocean ridge basalt (I-MORB)-likefertile mantle wedge is first infiltrated by a small percentageof fluid, sourced from the altered oceanic crust, prior to additionof <1% Indian Ocean sediment dominated by pelagic material. KEY WORDS: differentiation; geochemistry; source components; Sr, Nd, Hf and O isotopes; Sunda arc  相似文献   
719.
古台山矿床是雪峰弧形构造带中段颇具代表性的石英脉型金锑矿床。矿床位于白马山复式岩体的外接触带,主要赋存于南华系长安组和板溪群五强溪组。本文对古台山矿床载金矿物毒砂流体包裹体氦、氩同位素和含矿石英流体包裹体铷、锶同位素进行了分析。He-Ar同位素分析显示,成矿流体的3He/4He为0.011~0.038 Ra,40Ar/36Ar值为414.4~732.6,表明成矿流体主要为地壳流体,同时有部分大气降水的加入。Sr同位素分析显示,含矿石英流体包裹体87Rb/86Sr变化于0.013~0.956,87Sr/86Sr变化于0.72529~0.73245;利用前人获得的成矿年龄(223.6 Ma)进行了初始锶同位素组成的返算,获得其ISr-223.6变化于0.72360~0.73167,平均0.72744。通过与印支期白马山岩体、板溪群等相关地质体锶同位素组成对比,认为古台山矿床成矿流体不可能单独来源于岩浆,而是岩浆流体运移过程中与来自基底具有高锶同位素比值的碎屑岩水岩相互作用的结果。He-Ar同位素揭示矿区深部及周缘地区板溪群具有更好的资源潜力。  相似文献   
720.
物源分析是古地理重建与盆地分析的关键,典型的物源区包括岩浆弧、大陆地块、再旋回造山带等。重矿物种类多样,蕴含丰富的母岩信息,是物源分析的重要对象。现代砂的研究表明,不同大地构造背景下形成的沉积物具有不同的重矿物组合。遗憾的是,由于古代沉积的重矿物组合在成岩过程中会被改造,现代砂的重矿物组合与物源区的耦合规律并不能直接应用于古代砂岩。科学界尚不清楚岩浆弧与大陆地块来源的古代砂岩的重矿物特征。西藏日喀则弧前盆地与特提斯喜马拉雅侏罗纪—古近纪砂岩物源明确,要么来自亚洲大陆的冈底斯弧,要么来自印度大陆地块,是探讨岩浆弧与大陆地块来源的古代砂岩重矿物特征的绝佳场所。16件砂岩重矿物定量分析结果表明,两个物源区来源的砂岩重矿物组合均被成岩作用严重改造,辉石、角闪石等不稳定矿物消失,绿帘石等自生矿物出现;冈底斯弧来源的砂岩以出现大量绿帘石或磷灰石为特征,ZTR指数小于40;印度大陆地块来源的砂岩以出现大量锆石、电气石和金红石为特征,ZTR指数大于75。这一结果指示岩浆弧与大陆地块来源的砂岩的重矿物组合具有明显差异性,可以用来探讨物源的大地构造背景。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号