首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   153篇
  免费   18篇
  国内免费   4篇
地球物理   61篇
地质学   97篇
海洋学   8篇
天文学   2篇
综合类   1篇
自然地理   6篇
  2023年   1篇
  2022年   1篇
  2021年   1篇
  2020年   17篇
  2019年   7篇
  2018年   3篇
  2017年   3篇
  2016年   3篇
  2015年   5篇
  2014年   9篇
  2013年   4篇
  2012年   4篇
  2011年   7篇
  2010年   8篇
  2009年   8篇
  2008年   17篇
  2007年   11篇
  2006年   3篇
  2005年   9篇
  2004年   7篇
  2003年   6篇
  2002年   8篇
  2001年   8篇
  2000年   3篇
  1999年   1篇
  1998年   1篇
  1997年   3篇
  1996年   2篇
  1995年   1篇
  1994年   6篇
  1993年   2篇
  1991年   4篇
  1988年   1篇
  1986年   1篇
排序方式: 共有175条查询结果,搜索用时 15 毫秒
91.
Tephrostratigraphic correlations commonly rely on geochemical composition supported by additional constraints (e.g., multiple stratigraphically ordered tephra, geochronological-stratigraphical constraints, and isotopic determinations), which provide key clues to restrict the number of possible candidates and disambiguate the correlation of a specific tephra among compositionally similar volcanic sources/tephra. However, such additional data may not be available or acquirable, leaving the geochemical data as sole, but challenging viable approach. In this study, two geochronologically poorly constrained late Pleistocene tephra from the eastern Adriatic –from a sand profile on Mljet Island (M-53/2) and from a marine sediment core from Pirovac Bay (PROS 721)– were correlated to known eruptions using only geochemical data (major and trace elements of glass shards), which were treated using both log ratio transformed and raw data. After the statistical treatment of the geochemical data using bivariate plots, linear discrimination analyses and selbal algorithm, the tephra M-53/2 and PROS 721 were suitably correlated with the widespread tephra generated during the Campi Flegrei eruptions of Massereia del Monte (Y-3 marine tephra, 29.0 ± 0.8 ka) and Neapolitan Yellow Tuff (14.5 ± 0.4 ka), respectively. This study showed that the correlation was hardly tenable when using the raw data, as opposed to compositional approach, which yielded satisfactory results. As a consequence, the distribution of Massereia del Monte/Y-3 tephra extended far toward the northeast, while a better chronological model, for reconstructing the paleoenvironmental changes at the Pirovac Bay location and the Holocene sea-level dynamics, could be obtained.  相似文献   
92.
The tephra fallout from the 12–15 August 1991 explosive eruption of Hudson volcano (Cordillera de los Andes, 45°54 S-72°58 W; Chile) was dispersed on a narrow, elongated ESE sector of Patagonia, covering an area (on land) of more than 100 000 km2. The elongated shape of the deposit, together with the relatively coarse mean and median values of the particles at a considerable distance from the vent, were the result of strong winds blowing to the southeast during the eruption. The thickness of the fall deposit decreases up to 250 km ESE from Hudson volcano, where it begins to thicken again. Secondary maxima are well developed at approximately 500 km from the vent. Secondary maxima, together with grainsize bimodality in individual layers and in the bulk deposit suggest that particle aggregation played an important role in tephra sedimentation. The fallout deposit is well stratified, with alternating fine-grained and coarsegrained layers, which is probably a result of strong eruptive pulses followed by relatively calm periods and/or changes in the eruptive style from plinian to phreatoplinian. The tephra is mostly composed of juvenile material: the coarse mode (mostly pumice) shifts to finer sizes with distance from the volcano; the fine mode (mostly glass shards) is always about 5/6 phi. Glass shards and pumice are mostly light gray to colorless. However, considerable amounts of dark, poorly vesiculated, blocky shards, suggest a hydromagmatic component in the eruption. A land-based tephra volume of 4.35 km3 was estimated, and a total volume of 7.6 km3 arose from an extrapolation, which took into account the probable volume sedimented in the sea. Bulk density ranges from 0.9 to 1.10 gr/cm3 (beyond 110 km from the vent). Rather uniform density values measured in crushed samples (2.45–2.50 gr/cm3 at all distances from the vent) reveal a relatively homogeneous composition. Mean and median sizes decrease rapidly up to 270 km from the vent; beyond that point they are more or less constant, whereas the maximum size (1 phi) shows a steady decrease up to 550 km. A concomitant improvement in sorting is observed. This is attributed to sorting due to wind transport combined with particle aggregation at different times and distances from the vent. The Hudson tephra fallout shares some strikingly similar features with the Mount St. Helens (18 May 1980) and Quizapu (1932) eruptions.  相似文献   
93.
Volcán Alcedo is one of the seven western Galápagos shields and is the only active Galápagos volcano known to have erupted rhyolite as well as basalt. The volcano stands 4 km above the sea floor and has a subaerial volume of 200 km3, nearly all of which is basalt. As Volcán Alcedo grew, it built an elongate domal shield, which was partly truncated during repeated caldera-collapse and partial-filling episodes. An outward-dipping sequence of basalt flows at least 250 m thick forms the steepest (to 33°) flanks of the volcano and is not tilted; thus a constructional origin for the steep upper flanks is favored. About 1 km3 of rhyolite erupted late in the volcano's history from at least three vents and in 2–5 episodes. The most explosive of these produced a tephra blanket that covers the eastern half of the volcano. Homogeneous rhyolitic pumice is overlain by dacite-rhyolite commingled pumice, with no stratigraphic break. The tephra is notable for its low density and coarse grain size. The calculated height of the eruption plume is 23–30 km, and the intensity is estimated to have been 1.2x108 kg/s. Rhyolitic lavas vented from the floor of the caldera and from fissures along the rim overlie the tephra of the plinian phase. The age of the rhyolitic eruptions is 120 ka, on the basis of K-Ar ages. Between ten and 20 basaltic lava flows are younger than the rhyolites. Recent faulting resulted in a moat around part of the caldera floor. Alcedo most resently erupted sometime between 1946 and 1960 from its southern flank. Alcedo maintains an active, transient hydrothermal system. Acoustic and seismic activity in 1991 is attributed to the disruption of the hydrothermal system by a regional-scale earthquake.  相似文献   
94.
Five cores from the southern Tyrrhenian and Ionian seas were studied for their tephra and cryptotephra content in the 4.4–2.0 ka time interval. The chronological framework for each core was obtained by accelerator mass spectrometry 14C dating, the occurrence of distinct marker tephra and stratigraphic correlation with adjacent records. Tephrochronology allowed us to correlate the analyzed deposits with tephra markers associated with Somma-Vesuvius (79 ad ), Ischia Island (Cretaio), Mt Etna (FG, FL and FS) and Campi Flegrei (Astroni-Agnano Monte Spina) events. For the first time in the marine setting, a large single glass data set is provided for the Late Holocene Etnean marker beds including the FS tephra (ca. 4.3 ka). Moreover, unknown deposits from Lipari (ca. 2.2–2.0 ka) and Vulcano (3.6–3.3 ka) are also recognized at more distal sites than previously reported. These results contribute to improve the high-resolution tephrostratigraphic framework of the central Mediterranean Sea. They also provide new insights into the chemical composition and dispersal pattern of tephras that can be used as inter-archive tools for regional and ‘local’ stratigraphic correlations and for addressing paleoclimate research.  相似文献   
95.
96.
Central–southern Italy is one of the most suitable areas in the world for tephrostratigraphic studies, owing to the numerous volcanic sources with explosive activity during the Pleistocene. This work presents a systematic investigation of the chemical (trace elements) and isotopic (Sr and Nd) compositions of the main tephra markers within lacustrine sediments of the San Gregorio Magno Basin (Campania, southern Italy). This study: (i) provides full geochemical (trace elements and isotopes) characterization of eight significant Upper Pleistocene marker layers (X‐6, X‐5, C‐22, MEGT/Y‐7, CI/Y‐5, C‐10, Y‐3, NYT/C2) widely dispersed over the Mediterranean area; (ii) proposes a new tephra marker for Marine Isotope Stage 7, dated to 240 ka; and (iii) refines the correlations of tephra levels belonging to the investigated sequence. This study highlights that in most cases the Nd isotope composition of the glass and Sr isotope composition of the coexisting minerals are more reliable than 87Sr/86Sr of the glass, and hence is more helpful as a further tool for tephrostratigraphic correlations, as recently proposed in the literature. Moreover, this study is a first step towards the construction of a complete geochemical database for future tephra investigations in the Mediterranean area. Copyright © 2019 John Wiley & Sons, Ltd.  相似文献   
97.
Radiocarbon‐dated sediment cores from six lakes in the Ahklun Mountains, south‐western Alaska, were used to interpolate the ages of late Quaternary tephra beds ranging in age from 25.4 to 0.4 ka. The lakes are located downwind of the Aleutian Arc and Alaska Peninsula volcanoes in the northern Bristol Bay area between 159° and 161°W at around 60°N. Sedimentation‐rate age models for each lake were based on a published spline‐fit procedure that uses Monte Carlo simulation to determine age model uncertainty. In all, 62 14C ages were used to construct the six age models, including 23 ages presented here for the first time. The age model from Lone Spruce Pond is based on 18 ages, and is currently the best‐resolved Holocene age model available from the region, with an average 2σ age uncertainty of about ± 109 years over the past 14.5 ka. The sedimentary sequence from Lone Spruce Pond contains seven tephra beds, more than previously found in any other lake in the area. Of the 26 radiocarbon‐dated tephra beds at the six lakes and from a soil pit, seven are correlated between two or more sites based on their ages. The major‐element geochemistry of glass shards from most of these tephra beds supports the age‐based correlations. The remaining tephra beds appear to be present at only one site based on their unique geochemistry or age. The 5.8 ka tephra is similar to the widespread Aniakchak tephra [3.7 ± 0.2 (1σ) ka], but can be distinguished conclusively based on its trace‐element geochemistry. The 3.1 and 0.4 ka tephras have glass major‐ and trace‐element geochemical compositions indistinguishable from prominent Aniakchak tephra, and might represent redeposited beds. Only two tephra beds are found in all lakes: the Aniakchak tephra (3.7 ± 0.2 ka) and Tephra B (6.1 ± 0.3 ka). The tephra beds can be used as chronostratigraphic markers for other sedimentary sequences in the region, including cores from Cascade and Sunday lakes, which were previously undated and were analyzed in this study to correlate with the new regional tephrostratigraphy. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
98.
Comparatively few Icelandic tephra horizons dated to the early part of the Holocene have so far been detected outside Iceland. Here, I present several tephra horizons that have been recorded in a Holocene peat sequence on the Faroe Islands. Geochemical analyses show that at least two dacitic and one rhyolitic tephra layers were erupted from the Katla volcanic system on southern Iceland between ca. 8000 and 5900 cal. yr BP. The upper two layers can be correlated with the SILK tephras described from southern Iceland, whereas the third, dated to ca. 8000 cal. yr BP, has a geochemistry virtually identical to the rhyolitic component of the Vedde Ash. The results suggest that the Late Weichselian and early Holocene eruption history of the Katla volcano was probably more complex than inferred from Iceland. A new, early Holocene rhyolitic tephra dated to ca. 10 500 cal. yr BP probably originates in the Snæfellsnes volcanic centre in western Iceland. These new findings may play an important role in developing a Holocene tephra framework for northwest Europe. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   
99.
Building reliable chronologies from lake sediments, peat and other paleoenvironmental archives can be challenging, especially for historical times where radiocarbon is unreliable. Nineteenth- and 20th-century eruptions from Mount St. Helens (MSH) provide important chronostratigraphic markers for regional paleoenvironmental studies within this time frame, but are constrained by poorly geochemically characterized tephra and/or limited published data. Here, we present glass geochemistry from the most significant eruptions from this time. This includes proximal, medial and distal deposits of the 18 May 1980 MSH eruption, layer T ( ad 1799/1800), a new tephra that we argue represents the ad 1842 eruption, and the 22 July 1980 eruption that had reported ashfall in Canada. Our results indicate that most tephras ejected during these eruptions, within a time frame of ~200 years, have distinct glass geochemical characteristics that can be used to identify distal deposits for tephrochronological studies. Layer T is on trend with analyses of the 1980 eruption but has a distinct dacitic glass population. The 1980 and ad 1842 eruptions are similar, both having rhyolitic glass compositions, but the ad 1842 event can be differentiated by a more constrained SiO2 range in the main geochemical population, and the presence of a unique SiO2 sub-population.  相似文献   
100.
A tephra layer with normal grading in the sub-bottom depth interval 119–122 cm in marine core SO202-27-6 was collected on Patton Seamount in the northeast North Pacific Ocean. Based on the geochemistry of volcanic glass shards determined by a wavelength dispersive electron probe micro-analyser and an X-ray fluorescence analyser, this layer is correlated to the Dawson tephra, a widespread late Pleistocene time marker tephra in Alaska and the Yukon. The age of the Dawson tephra in the core is 29.03 ± 0.178 ka (1 sigma) based on a published age model. The Dawson tephra is revealed to have been deposited in the transition from marine isotope stage 3 to 2, i.e. the last stage of Heinrich Stadial 3 derived from the ice-rafted debris signal. According to the correlation between Greenland (NGRIP ice core) and this core, the Dawson tephra occupies the record immediately before inter stadial 4 in the δ18O stratigraphy of NGRIP. The Dawson tephra on Patton Seamount includes lithic fragments, which suggests that it was deposited not only by fall-out but also in part via another mechanism, such as icebergs from the Cordilleran ice sheet or seasonal sea ice.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号