首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   415篇
  免费   64篇
  国内免费   310篇
测绘学   1篇
地球物理   25篇
地质学   752篇
海洋学   1篇
综合类   8篇
自然地理   2篇
  2024年   5篇
  2023年   9篇
  2022年   15篇
  2021年   21篇
  2020年   14篇
  2019年   26篇
  2018年   32篇
  2017年   41篇
  2016年   28篇
  2015年   35篇
  2014年   27篇
  2013年   46篇
  2012年   61篇
  2011年   26篇
  2010年   28篇
  2009年   33篇
  2008年   44篇
  2007年   31篇
  2006年   41篇
  2005年   30篇
  2004年   31篇
  2003年   19篇
  2002年   11篇
  2001年   18篇
  2000年   14篇
  1999年   13篇
  1998年   11篇
  1997年   14篇
  1996年   5篇
  1995年   11篇
  1994年   12篇
  1993年   11篇
  1992年   7篇
  1991年   1篇
  1990年   4篇
  1989年   8篇
  1988年   2篇
  1987年   3篇
  1984年   1篇
排序方式: 共有789条查询结果,搜索用时 843 毫秒
101.
Granitoid plutons are often difficult to radiometrically date precisely due to the possible effects of protracted and complex magmatic evolution, crustal inheritance, and/or partial re-setting of radiogenic clocks. However, apart from natural/geological issues, methodological and analytical problems may also contribute to blurring geochronological data. This may be exemplified by the Variscan Karkonosze Pluton (SW Poland). High-precision chemical abrasion (CA) ID-TIMS zircon data indicate that the two main rock types, porphyritic and equigranular, of this igneous body were both emplaced at ca. 312 Ma, while field evidence points to a younger age for the latter. This is in contrast to the earlier reported SIMS (SHRIMP) zircon dates that scattered mainly between ca. 322 and 302 Ma. In an attempt to overcome this dispersion, at least in part caused by radiogenic lead loss, the CA technique was used before SHRIMP analysis. The 206Pb/238U age obtained in this way from a sample of porphyritic granite is 322 ± 3 Ma, ~16 Ma older than the untreated zircons; another porphyritic sample yielded a mean age of 319 ± 3 Ma, and the mean age was 318 ± 4 Ma for an equigranular granite sample – all three somewhat older than the age obtained by ID-TIMS. Older SIMS dates of ca. 318–322 Ma might indicate either faint inheritance or that zircon domains crystallized during earlier stages of Karkonosze igneous evolution. The ID-TIMS results have been used to re-assess the whole-rock Rb–Sr data. Excluding a porphyritic granite with excess radiogenic 87Sr, it appears that isotopic homogeneity was achieved for most samples during the 312 Ma event, as shown by a pooled 21-point isochron with an age of 311 ± 3 Ma and an initial 86Sr/86Sr of 0.7067 ± 4. Local crustal contamination by stopping of metapelitic material might account for the more radiogenic Sr isotope signature observed in biotite-rich schlieren. A critical re-evaluation of all available SHRIMP data using the ID-TIMS age of 312 Ma as a benchmark suggests that the observed scatter may be partly attributed to analytical and methodological problems, in particular failing to distinguish subtly discordant spots from truly concordant ones, which is a serious limitation of the microbeam analytical approach. Other likely pitfalls contributing to geochronological scatter are identified in the published Re–Os ages on molybdenite and the 40Ar/39Ar data on micas. A scenario postulating a 15–20 milliion year evolution of the Karkonosze Pluton cannot be established on the basis of available geochronological data, which rather supports a brief igneous event, although a more protracted pre-emplacement evolution is possible. A short timescale for crystallization of large igneous bodies, as suggested by the ID-TIMS data from the Karkonosze Granite, is in line with models of transport of granitic magmas through dikes to form large plutons.  相似文献   
102.
Xiba granitic pluton is located in South Qinling tectonic domain of the Qinling orogenic belt and consists mainly of granodiorite and monzogranite with significant number of microgranular quartz dioritic enclaves. SHRIMP zircon U–Pb isotopic dating reveals that the quartz dioritic enclaves formed at 214±3 Ma, which is similar to the age of their host monzogranite (218±1 Ma). The granitoids belong to high-K calc-alkaline series, and are characterized by enriched LILEs relative to HFSEs with negative Nb, Ta and Ti anomalies, and right-declined REE patterns with (La/Yb)N ratios ranging from 15.83 to 26.47 and δEu values from 0.78 to 1.22 (mean= 0.97). Most of these samples from Xiba granitic pluton exhibit εNd(t) values of ?8.79 to ?5.38, depleted mantle Nd model ages (TDM) between 1.1 Ga and 1.7 Ga, and initial Sr isotopic ratios (87Sr/86Sr)i from 0.7061 to 0.7082, indicating a possible Meso- to Paleoproterozoic lower crust source region, with exception of samples XB01-2-1 and XB10-1 displaying higher (87Sr/86Sr)i values of 0.779 and 0.735, respectively, which suggests a contamination of the upper crustal materials. Quartz dioritic enclaves are interpreted as the result of rapid crystallization fractionation during the parent magmatic emplacement, as evidenced by similar age, texture, geochemical, and Sr-Nd isotopic features with their host rocks. Characteristics of the petrological and geochemical data reveal that the parent magma of Xiba granitoids was produced by a magma mingling process. The upwelling asthenosphere caused a high heat flow and the mafic magma was underplated into the bottom of the lower continent crust, which caused the partial melting of the lower continent crustal materials. This geodynamic process generated the mixing parent magma between mafic magma from depleted mantle and felsic magma derived from the lower continent crust. Integrated petrogenesis and tectonic discrimination with regional tectonic evolution of the Qinling orogen, it is suggested that the granitoids are most likely products in a post-collision tectonic setting.  相似文献   
103.
Metallogeny of granitoid affinity was reviewed from the aspect of geotectonic history of the continental crust, particularly of the genesis of sedimentary crust involved in magmatism. The redox state of granitoids and related mineralization shows a remarkable contrast between the east and west sides of the Pacific Rim, but if examined closely, the reduced‐type and oxidized‐type granitoid provinces are juxtaposed in three regions: the circum‐Japan Sea region, the central Andes, and the Lachlan Fold Belt in southeastern Australia. Comparative study of these regions revealed that the reduced‐type magmatism associated with Sn mineralization generated in thick sedimentary crust which formed in three geotectonic environments: (i) accretionary terrane along a subduction zone (e.g. Jurassic East Asia), (ii) continental rift (e.g. Early Paleozoic Andes), and (iii) mega‐fan (e.g. Early Paleozoic southeastern Australia). A collisional orogen can provide large amounts of clastic sediment to these environments. The age gap between the magmatism and sedimentation varies depending on the tectonic evolution of individual regions. Thin sedimentary crust may not play an essential role for the reduced‐type magmatism. The oxidized‐type magmatism associated with porphyry Cu and other mineralization generated in the crust which was initially carbon‐free igneous crust or modified from sedimentary crust by magmatism. Subduction‐related basaltic magmas are relatively oxidized, and may enhance fO2 conditions of granitoid activity. Repeated magmatism in a monotonous convergent margin may be favorable for porphyry Cu mineralization as exemplified in the eastern Pacific Rim.  相似文献   
104.
曾涛  王涛  童英  张磊  郭磊 《地质通报》2012,31(5):732-744
在俄罗斯远东地区晚中生代花岗岩类年龄和相关地球化学数据的基础上,初步建立了该区晚中生代花岗岩类的年代学格架:大致以145Ma为界,分为侏罗纪(178~151Ma)和早白垩世(142~122Ma)2期。侏罗纪的花岗岩类主要为花岗岩-花岗闪长岩-石英二长岩组合,总体上为准铝质—强过铝质高钾钙碱性系列;早白垩世的花岗岩类主要为花岗岩-石英闪长岩-石英二长岩组合,主要为过铝质钙碱性—高钾钙碱性系列—钾玄岩系列。2期花岗岩稀土元素配分曲线均呈右倾型,重稀土元素曲线较平坦,都富集大离子亲石元素(如U、K)和轻稀土元素。与中国东北地区晚中生代花岗岩类对比,中国东北地区总体以兴安岭为中心,中间为早白垩世的花岗岩类,两侧为侏罗纪花岗岩类对称分布。境内外的侏罗纪花岗岩类构造背景不同,其分布与鄂霍次克洋和太平洋板块的俯冲有关,早白垩世花岗岩类可能形成于鄂霍次克带挤压造山后的伸展垮塌和太平洋板块的俯冲弧后伸展阶段。  相似文献   
105.
The Erlangmiao granite intrusion is located in the eastern part of the East Qinling Orogen.The granite contains almost 99 vol.% felsic minerals with accessory garnet,muscovite,biotite,zircon,and Fe-Ti ...  相似文献   
106.
广东南山花岗岩体位于陂头复式岩体西端,锆石的SHRIMP U-Pb年龄为158.1±1.8Ma,是燕山早期岩浆活动的产物。岩石化学特征显示岩体以高硅、富碱、贫Ca和Mg以及高TFeO/MgO、低CaO/Na2O为特征。其K2O/Na2O〉1,A/NK=7.8~11.92,A/CNK=1.33~1.68,属过铝质碱性岩石。在稀土和微量元素组成上,岩石富含稀土元素(除明显的负Eu异常,δEu=0.09~0.16)以及Zr、Y、Th、U、Nb等高场强元素,贫Ba、Sr、Ti等,高10000x Ga/Al(比值大于2.6)。在Zr、Nb、Ce、Y对10000×Ga/Al以及TFeO/MgO-SiO2等A型花岗岩多种判别图上,投影点主要落在A型花岗岩区,而与高分异的I、S型花岗岩明显不同。这些特征均指示,南山岩体具有铝质A型花岗岩的特点。通过Y-Nb-3Ga和Y-Nb-Ce构造环境判别图解将其进一步划分为A2型花岗岩,代表其形成于拉张的构造背景之下。本文在此研究基础上,认为南山花岗质岩浆可能形成于相对挤压的中侏罗世。而在晚侏罗世早期相对拉张的作用下,岩石圈减薄,软流圈地幔上涌,地壳的泥质岩和少量砂质岩受到幔源流体富集后发生部分熔融后上侵形成铝质A型花岗岩,且有较强的结晶分异作用。  相似文献   
107.
西准噶尔地区广泛发育晚古生代后碰撞花岗岩,年龄多集中于300Ma左右,在时代上属于晚石炭世,A型花岗岩具有高硅、低铝、富碱、准铝质—弱过铝质、贫钙、低镁,10 000×Ga/Al比值较大,强烈富集高场强元素(HFSE)及Zr、Y、Ga等元素,Sr、Ba强烈亏损,稀土配分模式图呈现典型的右倾"海鸥型"等,并且在A1-A2...  相似文献   
108.
姚远  陈骏  陆建军  章荣清 《矿床地质》2013,32(3):467-488
对湘东锡田岩体进行的LA-ICP-MS定年结果表明,2个第一期中(细)粒斑状黑云母二长花岗岩样品的年龄分别为(220.9±0.6) Ma及(220.7±0.7)Ma;第二期中细粒二云母二长花岗岩的年龄为(154.4±0.7)Ma.两期花岗岩均为高钾、富碱、弱过铝质岩石.稀土元素总量较高,富集U、Th,亏损Ti、P等高场强元素和Ba、Sr等大离子亲石元素,具高的104 Ga/Al,显示A型花岗岩特征.印支期花岗岩略富集轻稀土元素,Eu异常较弱;燕山期花岗岩轻、重稀土元素分异不明显,Eu异常显著.Hf同位素研究显示,两期次花岗岩均具有较低的εHf(t)(-4.91~-11.04),亏损地幔二阶段模式年龄集中在1.6~1.8 Ga,与华夏地块古老的变质基底年龄一致.因此,锡田岩体是华夏地块古元古代地壳物质在伸展的构造背景下部分熔融的产物.锡田A型花岗岩复式岩体的确定,对于研究湖南东部在中生代印支、燕山两期构造事件中所处的构造背景具有重要意义,同时也为华南地区存在印支期A型花岗岩钨锡成矿作用增加了证据.  相似文献   
109.
Biotite igneous ages and well‐defined isochron ages of plutons from the composite Blue Tier Batholith and the Coles Bay area in northeastern Tasmania range from 395 to 370 Ma. The older limit of this range, for the George River granodiorite, is considerably older than any age previously recorded for NE Tasmania. The ages of the youngest plutons (Mt Paris and Anchor granites), which host cassiterite ores, record pervasive hydrothermal alteration events. The initial 87Sr/80Sr ratios of the granitoids range from 0.7061 to 0.7136 and suggest different protolith compositions, consistent with mineralogical and geochemical characteristics of each pluton. The S‐type garnetbiotite granites (Ansons Bay and Booby alia granites) have initial ratios greater than 0.7119, indicative of enriched, high Rb/Sr ratio, crustal source‐rocks of Proterozoic age (1700–800 Ma). The S‐type biotite granites (Poimena and Pearson granites) have relatively high initial 87Sr/86Sr ratios (0.7070, 0.7105) but overlap with those of the I‐type granodiorites (George River, Scamander Tier, Pyengana and Coles Bay granodiorites) which are in the range of 0.7061 to 0.7073. The initial ratios of the enriched altered plutons are poorly constrained, and on both hand‐specimen and thin‐section scales, reveal open‐system Sr isotopic patterns.

Isochron ages for the arenite‐lutite and lutite sedimentary associations of the Mathinna Beds, which are intruded by the granitoids, reflect an approach to Sr isotopic equilibrium during regional metamorphism. The metamorphic age (401 ± 7 Ma) of the early Pragian arenite‐lutite association indicates a relatively small time interval between deposition, regional metamorphism and granitoid intrusion. The isotopic age for the lutite sedimentary association (423 ± 22 Ma) is tentatively correlated with a Benambran‐age burial metamorphic event that has not previously been recorded in Tasmania.  相似文献   
110.
In north-central Brazil, a number of granite plutons, which intrude Paleoproterozoic gneiss-granulite terrains of the Goiás Massif, crop out along a thermal axis parallel to the Transbrasiliano Lineament. Single zircon lead evaporation ages from three granitic bodies span between 552 and 545 Ma. Sm–Nd model ages (TDM) vary between 2.1 and 1.7 Ga and negative εNd(0.55 Ga) values between −10 and −13 show that Paleoproterozoic crust was involved in the genesis of these granites. These plutons, which form the Lajeado Intrusive Suite are part of an important Ediacaran magmatic event in central-northern of the Tocantins Tectonic Province, composed of metaluminous to slightly peraluminous granites with geochemical characteristics similar to A-type granites, whose crystallization occurred under low water activity during magmatic emplacement. The granitic intrusive bodies are related to a crustal extensional/transtensional tectonic event at the end of the Neoproterozoic. They may have connection with the granitic plutons of similar age (0.56–0.52 Ga) in northwestern Ceará state, on the other side of the Paleozoic Parnaíba Basin in northwest of Borborema Province, along the Transbrasiliano Lineament.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号