首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1833篇
  免费   399篇
  国内免费   760篇
测绘学   81篇
大气科学   71篇
地球物理   480篇
地质学   1935篇
海洋学   123篇
天文学   70篇
综合类   67篇
自然地理   165篇
  2024年   11篇
  2023年   43篇
  2022年   66篇
  2021年   105篇
  2020年   85篇
  2019年   129篇
  2018年   118篇
  2017年   158篇
  2016年   124篇
  2015年   106篇
  2014年   103篇
  2013年   266篇
  2012年   103篇
  2011年   115篇
  2010年   81篇
  2009年   120篇
  2008年   119篇
  2007年   110篇
  2006年   134篇
  2005年   113篇
  2004年   136篇
  2003年   107篇
  2002年   70篇
  2001年   59篇
  2000年   68篇
  1999年   64篇
  1998年   40篇
  1997年   58篇
  1996年   32篇
  1995年   31篇
  1994年   20篇
  1993年   11篇
  1992年   14篇
  1991年   12篇
  1990年   7篇
  1989年   7篇
  1988年   10篇
  1987年   11篇
  1986年   3篇
  1985年   9篇
  1984年   6篇
  1983年   2篇
  1982年   1篇
  1981年   1篇
  1980年   2篇
  1978年   1篇
  1877年   1篇
排序方式: 共有2992条查询结果,搜索用时 343 毫秒
41.
The Malpica–Tui complex (NW Iberian Massif) consists of a Lower Continental Unit of variably deformed and recrystallized granitoids, metasediments and sparse metabasites, overridden by an upper unit with rocks of oceanic affinities. Metamorphic minerals dated by the 40Ar/39Ar method record a coherent temporal history of progressive deformation during Variscan metamorphism and exhumation. The earliest stages of deformation (D1) under high-pressure conditions are recorded in phengitic white micas from eclogite-facies rocks at 365–370 Ma. Following this eclogite-facies peak-metamorphism, the continental slab became attached to the overriding plate at deep-crustal levels at ca. 340–350 Ma (D2). Exhumation was accompanied by pervasive deformation (D3) within the continental slab at ca. 330 Ma and major deformation (D4) in the underlying para-autochthon at 315–325 Ma. Final tectonothermal evolution included late folding, localized shearing and granitic intrusions at 280–310 Ma.

Dating of high-pressure rocks by the 40Ar/39Ar method yields ages that are synchronous with published Rb–Sr and Sm–Nd ages obtained for both the Malpica–Tui complex and its correlative, the Champtoceaux complex in the French Armorican Massif. The results indicate that phengitic white mica retains its radiogenic argon despite been subjected to relatively high temperatures (500–600 °C) for a period of 20–30 My corresponding to the time-span from the static, eclogite-facies M1 peak-metamorphism through D1-M2 eclogite-facies deformation to amphibolite-facies D2-M3. Our study provides additional evidence that under certain geological conditions (i.e., strain partitioning, fluid deficiency) argon isotope mobility is limited at high temperatures, and that 40Ar/39Ar geochronology can be a reliable method for dating high pressure metamorphism.  相似文献   

42.
A. H. N. Rice  W. Frank 《Tectonophysics》2003,374(3-4):219-236
The relative significance of early (Finnmarkian) and late (Scandian) Caledonian deformation in N. Norway is uncertain. Early studies suggested pervasive Finnmarkian deformation whilst later results indicated a restricted Finnmarkian domain. The present work suggests it was more widespread than accepted and that inter Finnmarkian–Scandian deformation occurred. 40Ar/39Ar dating of 2–6 and 6–11 μm pelitic fractions from the lower to mid-greenschist facies Tanahorn Nappe (five samples; base Middle Allochthon) and the epizone Løkvikfjellet and Barents Sea Groups (three samples; North Varanger Region) in the north Scandinavian Caledonides show slightly discordant spectra. Most spectra from the Tanahorn Nappe preserve possible evidence of an early Caledonian event in the high temperature steps, with recoil/excess Ar effects in the low temperature steps; no pre-Caledonian relict component has been recorded. The results indicate Finnmarkian deformation continued to 460 Ma, with Scandian reactivation at 425–415 Ma. From the North Varanger Region, a strongly crenulated sample yielded plateau ages (444–442 Ma); means of combined young steps from weakly to uncrenulated samples gave 470–450 Ma, suggesting penetrative strike-slip deformation occurred in the late Finnmarkian to inter-Finnmarkian–Scandian period. No Scandian ages were recorded in the North Varanger Region. Reassessment of published data from the Laksefjord Nappe and Gaissa Thrust Belt suggests they were affected by Finnmarkian deformation.  相似文献   
43.
The application of both thermoluminescence and infrared stimulated luminescence dating to the extensively studied “classical” Hungarian loess/paleosol sequences from Basaharc, Mende, and Paks provides a reliable chronological framework and climatostratigraphic reconstruction for the last interglacial/glacial cycle. Based on this combined luminescence dating study a new chronology is proposed for the “Young Loess” in Hungary. Luminescence dating suggests that the loess below the MF2 horizon formed during the penultimate glaciation. The MF1 horizon probably formed during an interstade within oxygen isotope stage 3. For the youngest loess, overlying MF1, a very high accumulation rate was determined. Large time gaps occur above MF2 and MF1, indicating that most of the record of the last glaciation is missing in the standard sections at Basaharc, Mende, and Paks. Either large discontinuities or a very low accumulation rate occurred in all three type sections during the soil-forming periods. High-resolution studies of climatic proxies using this combined luminescence dating approach provide a reliable chronological framework for loess and loess derivatives of the last glacial cycle in Hungary, although a precise and complete chronostratigraphic reconstruction cannot be achieved from the incomplete records found at these sites.  相似文献   
44.
胶东招掖郭家岭型花岗岩锆石年代学及其Pb同位素特征   总被引:2,自引:0,他引:2  
关康  罗镇宽  苗来成  黄佳展 《地球学报》1997,18(Z1):142-144
采用SHRIMP测年技术,精确地测定了郭家岭型花岗岩年龄为130-126Ma,主要金矿化在126-120Ma之间,郭家岭型花岗岩与金矿化关系最密切。岩体Pb同位素组成反映了本区所处构造背景。  相似文献   
45.
中国若干固体矿床He、Ar同位素研究   总被引:2,自引:0,他引:2  
胡瑞忠  毕献武 《地球学报》1997,18(Z1):170-172
本文以成矿阶段放物中的汉体包裹体为测定对象,研究了哀牢山金矿带内3个金矿床、马厂箐斑岩铜矿床、金顶铅-锌矿床和白云鄂博稀土-铌-铁矿床的He、Ar同位素组成。结果表明,He、Ar同位素对揭示成矿古流体的成因,具有灵敏感的示踪作用。  相似文献   
46.
Timing constraints on shear zones can provide an insight into the kinematic and exhumation evolution of metamorphic belts. In the Musgrave Block, central Australia, granulite facies gneisses have been affected, to varying degrees, by mylonitic deformation, some of which attained eclogite facies. The Davenport Shear Zone is a dominant strike-slip system that formed at eclogite facies conditions ( T  ≈650  °C and P ≈12.0  kbar). Sm–Nd mineral isochrons obtained from equilibrated high-pressure assemblages, as well as 40Ar–39Ar data, show that the eclogite and greenschist facies high-strain overprints were coeval, at c .  550  Ma. Mylonitic processes do not appear to have reset the U–Pb system in zircon, but may have partially disturbed it. The thermal gradient in the Musgrave Block crust at c .  550  Ma was c .  16  °C  km−1 and at c .  535  Ma was c .  18  °C  km−1, based on P – T  estimates of eclogite and greenschist facies shear zones, respectively. These estimates are similar to present-day geothermal gradients in many stable continental shield areas, suggesting that the region did not undergo a significant transient perturbation of the geotherm. Therefore, in the Musgrave Block, cooling subsequent to eclogite facies metamorphism appears to have been controlled by exhumation, rather than by the removal of a heat source. Estimated exhumation rates in the range 0.2 to ≥1.5  mm year−1 are comparable with other orogenic belts, rather than cratonic areas elsewhere.  相似文献   
47.
Two frozen cores from Blelham Tarn were subsampled and measured using mineral magnetic, loss-on-ignition (LOI), radiometric, granulometric and diatom analyses. A detailed chronology was established using varves, radioisotopes and diatoms. This has enabled an accurately dated reconstruction of sedimentation over the past forty years. Despite a large increase in lake productivity, evidence suggests that the observed exponential increase in sedimentation rates can be attributed to erosion within the catchment. The predominant sediment source has been identified as surface soil. A comparison between the trend of accelerated sedimentation and the record of increased sheep stocking density for the area within which the most of the catchment lies, as well as observations of contemporary surface processes within the catchment, both suggest that much of the recent erosion is a direct response to increased pressure from sheep grazing.  相似文献   
48.
 40Ar/39Ar同位素年龄测定,获得南天山蛇绿混杂岩基质黑云母石英片岩单矿物黑云母的两个坪年龄分别为(370.0±4.8)Ma和(259.0±3.3)Ma;中天山南缘长英质糜棱岩单矿物黑云母的坪年龄为(250.5±7.9)Ma,二云母花岗岩单矿物白云母的坪年龄为(348.9±0.3)Ma。结合南天山古生代沉积特征和塔里木及伊犁-哈萨克斯坦板块古地磁数据的综合分析,提出南天山晚泥盆世至石炭纪早期完成向伊犁-哈萨克斯坦板块的B型俯冲,中-晚二叠世进行陆内A型俯冲造山的板块碰撞演化模式。  相似文献   
49.
ABSTRACT The high-grade migmatitic core to the southern Brittany metamorphic belt has mineralogical and textural features that suggest high-temperature decompression. The chronology of this decompression and subsequent cooling history have been constrained with 40Ar/39 Ar ages determined for multigrain concentrates of hornblende and muscovite prepared from amphibolite and late-orogenic granite sheets within the migmatitic core, and from amphibolite of the structurally overlying unit. Three hornblende concentrates yield plateau isotope correlation ages of c. 303–298 Ma. Two muscovite concentrates record well-defined plateau ages of c. 306–305 Ma. These ages are geologically significant and date the last cooling through temperatures required for intracrystalline retention of radiogenic argon. The concordancy of the hornblende and muscovite ages suggest rapid post-metamorphic cooling. Extant geochronology and the new 40Ar/39Ar data suggest a minimum time-integrated average cooling rate between c. 725 °C and c. 125 °C of c. 14 ± 4°C Ma-1, although below 600 °C the data permit an infinitely fast rate of cooling. Mineral assemblages and reaction textures in diatexite migmatites suggest c. 4 kbar decompression at 800–750 °C. This must have pre-dated the rapid cooling. Emplacement of two-mica granites into the metamorphic belt occurred between 345 and 300 Ma. The youngest plutons were emplaced synkinematically along shallow-dipping normal faults interpreted to be reactivated Eo-Variscan thrusts. A penetrative, west-plunging stretching lineation developed in these granites suggests that extension was orogen-parallel. Extension was probably related to regional uplift and gravitational collapse of thermally weakened crust during constrictional (escape) tectonics in this narrow part of the Variscan orogen. This followed slab breakoff during the terminal stages of convergence between Gondwana and Laurasia; detachment may have been consequent upon a change in kinematics leading to dextral displacement within the orogen. Dextral ductile strike-slip displacement was concentrated in granites emplaced synkinematically along the South Armorican Shear Zone. Rapid cooling is interpreted to have resulted from tectonic unroofing with emplacement of granite along decollement surfaces. The high-grade migmatitic core of the southern Brittany metamorphic belt represents a type of metamorphic core complex formed during orogen-parallel extensional unroofing and regional-scale ductile flow.  相似文献   
50.
The metamorphic core of the Himalaya in the Kali Gandaki valley of central Nepal corresponds to a 5-km-thick sequence of upper amphibolite facies metasedimentary rocks. This Greater Himalayan Sequence (GHS) thrusts over the greenschist to lower amphibolite facies Lesser Himalayan Sequence (LHS) along the Lower Miocene Main Central Thrust (MCT), and it is separated from the overlying low-grade Tethyan Zone (TZ) by the Annapurna Detachment. Structural, petrographic, geothermobarometric and thermochronological data demonstrate that two major tectonometamorphic events characterize the evolution of the GHS. The first (Eohimalayan) episode included prograde, kyanite-grade metamorphism, during which the GHS was buried at depths greater than c. 35 km. A nappe structure in the lowermost TZ suggests that the Eohimalayan phase was associated with underthrusting of the GHS below the TZ. A c. 37 Ma 40Ar/39Ar hornblende date indicates a Late Eocene age for this phase. The second (Neohimalayan) event corresponded to a retrograde phase of kyanite-grade recrystallization, related to thrust emplacement of the GHS on the LHS. Prograde mineral assemblages in the MCT zone equilibrated at average T =880 K (610 °C) and P =940 MPa (=35 km), probably close to peak of metamorphic conditions. Slightly higher in the GHS, final equilibration of retrograde assemblages occurred at average T =810 K (540 °C) and P=650 MPa (=24 km), indicating re-equilibration during exhumation controlled by thrusting along the MCT and extension along the Annapurna Detachment. These results suggest an earlier equilibration in the MCT zone compared with higher levels, as a consequence of a higher cooling rate in the basal part of the GHS during its thrusting on the colder LHS. The Annapurna Detachment is considered to be a Neohimalayan, synmetamorphic structure, representing extensional reactivation of the Eohimalayan thrust along which the GHS initially underthrust the TZ. Within the upper GHS, a metamorphic discontinuity across a mylonitic shear zone testifies to significant, late- to post-metamorphic, out-of-sequence thrusting. The entire GHS cooled homogeneously below 600–700 K (330–430 °C) between 15 and 13 Ma (Middle Miocene), suggesting a rapid tectonic exhumation by movement on late extensional structures at higher structural levels.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号