首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4543篇
  免费   902篇
  国内免费   1205篇
测绘学   593篇
大气科学   792篇
地球物理   1043篇
地质学   2298篇
海洋学   839篇
天文学   253篇
综合类   365篇
自然地理   467篇
  2024年   22篇
  2023年   78篇
  2022年   183篇
  2021年   206篇
  2020年   216篇
  2019年   275篇
  2018年   215篇
  2017年   213篇
  2016年   231篇
  2015年   245篇
  2014年   311篇
  2013年   341篇
  2012年   273篇
  2011年   309篇
  2010年   225篇
  2009年   313篇
  2008年   350篇
  2007年   312篇
  2006年   335篇
  2005年   279篇
  2004年   259篇
  2003年   190篇
  2002年   167篇
  2001年   134篇
  2000年   145篇
  1999年   119篇
  1998年   113篇
  1997年   93篇
  1996年   81篇
  1995年   77篇
  1994年   73篇
  1993年   55篇
  1992年   57篇
  1991年   31篇
  1990年   33篇
  1989年   19篇
  1988年   19篇
  1987年   6篇
  1986年   11篇
  1985年   9篇
  1984年   11篇
  1983年   4篇
  1981年   2篇
  1980年   1篇
  1978年   3篇
  1977年   1篇
  1954年   5篇
排序方式: 共有6650条查询结果,搜索用时 109 毫秒
171.
Riparian plants can adapt their water uptake strategies based on climatic and hydrological conditions within a river basin. The response of cold-alpine riparian trees to changes in water availability is poorly understood. The Lhasa River is a representative cold-alpine river in South Tibet and an under-studied environment. Therefore, a 96 km section of the lower Lhasa River was selected for a study on the water-use patterns of riparian plants. Plant water, soil water, groundwater and river water were measured at three sites for δ18O and δ2H values during the warm-wet and cold-dry periods in 2018. Soil profiles differed in isotope values between seasons and with the distance along the river. During the cold-dry period, the upper parts of the soil profiles were significantly affected by evaporation. During the warm-wet period, the soil profile was influenced by precipitation infiltration in the upper reaches of the study area and by various water sources in the lower reaches. Calculations using the IsoSource model indicated that the mature salix and birch trees (Salix cheilophila Schneid. and Betula platyphylla Suk.) accessed water from multiple sources during the cold-dry period, whereas they sourced more than 70% of their requirement from the upper 60–80 cm of the soil profile during the warm-wet period. The model indicated that the immature rose willow tree (Tamarix ramosissima Ledeb) accessed 66% of its water from the surface soil during the cold-dry period, but used the deeper layers during the warm-wet period. The plant type was not the dominant factor driving water uptake patterns in mature plants. Our findings can contribute to strategies for the sustainable development of cold-alpine riparian ecosystems. It is recommended that reducing plantation density and collocating plants with different rooting depths would be conducive to optimal plant growth in this environment.  相似文献   
172.
At first sight, experimental results and observations on rocks suggest that the Zr content in rutile, where equilibrated with quartz and zircon, should be a useful thermometer for metamorphic rocks. However, diffusion data for Zr in rutile imply that thermometry should not, for plausible rates of cooling, give the high temperatures commonly observed in high‐grade metamorphic rocks. It is suggested here that such observations can be accounted for by high‐T diffusive closure of Si in rutile, causing the interior of rutile grains to become insensitive to the thermometer equilibrium well above the temperature of Zr diffusive closure. Paired with comparatively slow grain boundary diffusion and problematic zircon nucleation, this allows for cases of Zr retention in rutile through temperatures where Zr is still diffusively mobile within rutile grains. Other observations that may be accounted for in this context are large inter‐grain ranges of rutile Zr contents uncorrelated with rutile grain size, and flat Zr profiles across individual rutile grains, counter to what would be expected from diffusive closure. A consequence is that it is unlikely that Zr‐in‐rutile thermometry will be useful for estimating rock cooling rates.  相似文献   
173.
We measured the concentrations of dissolved inorganic carbon (DIC) and major ions and the stable carbon isotope ratios of DIC (δ13CDIC) in two creeks discharging from carbonate‐rich sulphide‐containing mine tailings piles. Our aim was to assess downstream carbon evolution of the tailings discharge as it interacted with the atmosphere. The discharge had pH of 6.5–8.1 and was saturated with respect to carbonates. Over the reach of one creek, the DIC concentrations decreased by 1.1 mmol C/l and δ13CDIC increased by ~4.0‰ 200 m from the seep source. The decrease in the DIC concentrations was concomitant with decreases in the partial pressure of CO2(aq) because of the loss of excess CO2(aq) from the discharge. The corresponding enrichment in the δ13CDIC is because of kinetic isotope fractionation accompanying the loss of CO2(g). Over the reach of the other creek, there was no significant decrease in the DIC concentrations or notable changes in the δ13CDIC. The insignificant change in the DIC concentrations and the δ13CDIC is because the first water sample was collected 160 m away from the discharge seep, not accessible during this research. In this case, most of the excess CO2(aq) was lost before our first sampling station. Our results indicate that neutral discharges from tailings piles quickly lose excess CO2(aq) to the atmosphere and the DIC becomes enrich in 13C. We suggest that a significant amount of carbon cycling in neutral discharges from tailings piles occur close to the locations where the discharge seeps to the surface. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
174.
Spatial heterogeneity is ubiquitous in nature, which may significantly affect the soil hydraulic property curves. The models of a closed‐form functional relationship of soil hydraulic property curves (e.g. VG model or exponential model) are valid at point or local scale based on a point‐scale hydrological process, but how do scale effects of heterogeneity have an influence on the parameters of these models when the models are used in a larger scale process? This paper uses a two‐dimensional variably saturated flow and solute transport finite element model (VSAFT2) to simulate variations of pressure and moisture content in the soil flume under a constant head boundary condition. By changing different numerical simulation block sizes, a quantitative evaluation of parameter variations in the VG model, resulting from the scale effects, is presented. Results show that the parameters of soil hydraulic properties are independent of scale in homogeneous media. Parameters of α and n in homogeneous media, which are estimated by using the unsaturated hydraulic conductivity curve (UHC) or the soil water retention curve (WRC), are identical. Variations of local heterogeneities strongly affect the soil hydraulic properties, and the scale affects the results of the parameter estimations when numerical experiments are conducted. Furthermore, the discrepancy of each curve becomes considerable when moisture content becomes closer to a dry situation. Parameters estimated by UHC are totally different from the ones estimated by WRC. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
175.
Changes in Earth's temperature have significant impacts on the global carbon cycle that vary at different time scales, yet to quantify such impacts with a simple scheme is traditionally deemed difficult. Here, we show that, by incorporating a temperature sensitivity parameter(1.64 ppm yr~(-1) ?C~(-1)) into a simple linear carbon-cycle model, we can accurately characterize the dynamic responses of atmospheric carbon dioxide(CO_2) concentration to anthropogenic carbon emissions and global temperature changes between 1850 and 2010(r~2 0.96 and the root-mean-square error 1 ppm for the period from 1960onward). Analytical analysis also indicates that the multiplication of the parameter with the response time of the atmospheric carbon reservoir(~12 year) approximates the long-term temperature sensitivity of global atmospheric CO_2concentration(~15 ppm?C~(-1)), generally consistent with previous estimates based on reconstructed CO_2 and climate records over the Little Ice Age. Our results suggest that recent increases in global surface temperatures, which accelerate the release of carbon from the surface reservoirs into the atmosphere, have partially offset surface carbon uptakes enhanced by the elevated atmospheric CO_2 concentration and slowed the net rate of atmospheric CO_2 sequestration by global land and oceans by ~30%since the 1960 s. The linear modeling framework outlined in this paper thus provides a useful tool to diagnose the observed atmospheric CO_2 dynamics and monitor their future changes.  相似文献   
176.
Four policies might close the gap between the global GHG emissions expected for 2020 on the basis of current (2013) policies and the reduced emissions that will be needed if the long-term global temperature increase can be kept below the 2 °C internationally agreed limit. The four policies are (1) specific energy efficiency measures, (2) closure of the least-efficient coal-fired power plants, (3) minimizing methane emissions from upstream oil and gas production, and (4) accelerating the (partial) phase-out of subsidies to fossil-fuel consumption. In this article we test the hypothesis of the International Energy Agency (IEA) that these policies will not result in a loss of gross domestic product (GDP) and we estimate their employment effects using the E3MG global macro-econometric model. Using a set of scenarios we assess each policy individually and then consider the outcomes if all four policies were implemented simultaneously. We find that the policies are insufficient to close the emissions gap, with an overall emission reduction that is 30% less than that found by the IEA. World GDP is 0.5% higher in 2020, with about 6 million net jobs created by 2020 and unemployment reduced.

Policy relevance

The gap between GHG emissions expected under the Copenhagen and Cancun Agreements and that needed for emissions trajectories to have a reasonable chance of reaching the 2 °C target requires additional policies if it is to be closed. This article uses a global simulation model E3MG to analyse a set of policies proposed by the IEA to close the gap and assesses their macroeconomic effects as well as their feasibility in closing the gap. It complements the IEA assessment by estimating the GDP and employment implications separately by the different policies year by year to 2020, by major industries, and by 21 world regions.  相似文献   

177.
Invasive plants pose significant threats to biodiversity and ecosystem function globally, leading to costly monitoring and management effort. While remote sensing promises cost-effective, robust and repeatable monitoring tools to support intervention, it has been largely restricted to airborne platforms that have higher spatial and spectral resolutions, but which lack the coverage and versatility of satellite-based platforms. This study tests the ability of the WorldView-2 (WV2) eight-band satellite sensor for detecting the invasive shrub mesquite (Prosopis spp.) in the north-west Pilbara region of Australia. Detectability was challenged by the target taxa being largely defoliated by a leaf-tying biological control agent (Gelechiidae: Evippe sp. #1) and the presence of other shrubs and trees. Variable importance in the projection (VIP) scores identified bands offering greatest capacity for discrimination were those covering the near-infrared, red, and red-edge wavelengths. Wavelengths between 400 nm and 630 nm (coastal blue, blue, green, yellow) were not useful for species level discrimination in this case. Classification accuracy was tested on three band sets (simulated standard multispectral, all bands, and bands with VIP scores ≥1). Overall accuracies were comparable amongst all band-sets (Kappa = 0.71–0.77). However, mesquite omission rates were unacceptably high (21.3%) when using all eight bands relative to the simulated standard multispectral band-set (9.5%) and the band-set informed by VIP scores (11.9%). An incremental cover evaluation on the latter identified most omissions to be for objects <16 m2. Mesquite omissions reduced to 2.6% and overall accuracy significantly improved (Kappa = 0.88) when these objects were left out of the confusion matrix calculations. Very high mapping accuracy of objects >16 m2 allows application for mapping mesquite shrubs and coalesced stands, the former not previously possible, even with 3 m resolution hyperspectral imagery. WV2 imagery offers excellent portability potential for detecting other species where spectral/spatial resolution or coverage has been an impediment. New generation satellite sensors are removing barriers previously preventing widespread adoption of remote sensing technologies in natural resource management.  相似文献   
178.
在分析现有滤波算法的基础上,结合数据驱动和模型驱动式算子各自的优点,提出基于点云空洞修复和TPS变形模型的数学形态学机载LIDAR点云滤波,该方法首先提取和修复由水域造成的大面积点云空洞,采用多尺度形态学开算子作用于修复的数据,得到近似裸露地表面;然后利用2D空间的TPS变形模型,以近似地表面为基础,插值原始点云,根据插值与原始点云高程的差值大小去识别地面点和非地面点。通过定量分析,验证该方法不仅有较高的滤波精度,而且也能较好的保留裸露地表的细节特征,同时该方法有助于辅助人工处理,提高数据处理的质量。  相似文献   
179.
针对HY-2A卫星定轨中存在系统误差的问题,该文提出了加入经验加速度补偿系统误差。为了获得HY-2A卫星的高精度轨道,采用星载DORIS距离变率数据探索了经验加速度对定轨精度的影响。探讨了1d、3d和7d作为经验加速度周期的定轨精度差异,分析了3d作为经验加速度周期时在径向、法向和切向3个方向设置经验加速度对定轨精度的不同影响。研究结果表明:HY-2A卫星在径向和切向不存在系统误差,而在法向存在系统误差,因而在法向设置经验加速度进行力学模型补偿能够取得较好的定轨结果;3d作为经验加速度的补偿周期较为合适,不仅能够减少解算参数个数,缩短计算时间,而且径向定轨精度可达到1.00cm,满足HY-2A卫星精密定轨需求。  相似文献   
180.
Within a wide range of best management practices for stormwater management in urban areas, there has been an increasing interest in source control measures. Source controls such as low-impact development (LID) techniques are potentially attractive as retrofit options for older developed areas that lack available land to implement conventional measures such as stormwater management ponds. Hence, distributed urban drainage models requiring detailed representation of developed drainage areas should be developed to accurately estimate the benefits that LIDs may provide. This study (1) presents a two-stage classification process on a high-resolution WorldView-2 image, and (2) demonstrates how to use the extracted land cover information in the subsequent hydrologic modelling and assessment of different LIDs’ performance. The proposed two-stage classification method achieved an overall accuracy of 80.6%, whereas a traditional pixel-based achieved 68.4% in classifying the same urban area into six land cover classes. From the classification results, the hydrologic properties of micro-subcatchments were imported in the United States Environmental Protection Agency Storm Water Management Model to assess the performance of LIDs. A reduction of run-off volume 18.2% and 37.1% was found with the implementation of porous pavement and bioretention, respectively, in a typical low-rise residential area located in the city of San Clemente, California, US. The study demonstrates the use of high-resolution remote sensing image to aid in evaluating LID retrofit options, and thus benefits in situations where detailed drainage area information is not available.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号