首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3806篇
  免费   743篇
  国内免费   2523篇
测绘学   52篇
大气科学   196篇
地球物理   755篇
地质学   5337篇
海洋学   132篇
天文学   199篇
综合类   80篇
自然地理   321篇
  2024年   33篇
  2023年   127篇
  2022年   239篇
  2021年   223篇
  2020年   213篇
  2019年   278篇
  2018年   290篇
  2017年   329篇
  2016年   332篇
  2015年   362篇
  2014年   376篇
  2013年   430篇
  2012年   482篇
  2011年   324篇
  2010年   321篇
  2009年   354篇
  2008年   332篇
  2007年   339篇
  2006年   320篇
  2005年   236篇
  2004年   227篇
  2003年   131篇
  2002年   89篇
  2001年   94篇
  2000年   98篇
  1999年   68篇
  1998年   58篇
  1997年   83篇
  1996年   46篇
  1995年   41篇
  1994年   42篇
  1993年   32篇
  1992年   24篇
  1991年   21篇
  1990年   14篇
  1989年   17篇
  1988年   11篇
  1987年   11篇
  1986年   10篇
  1985年   1篇
  1984年   4篇
  1983年   1篇
  1981年   3篇
  1980年   2篇
  1979年   3篇
  1977年   1篇
排序方式: 共有7072条查询结果,搜索用时 15 毫秒
881.
Rocks in the northern Leeuwin Complex of southwestern Australia preserve evidence of having formed during the breakup of Rodinia and the subsequent amalgamation of Gondwana. Detailed field mapping, structural investigation and U–Pb isotopic zircon analysis, using the Sensitive High‐mass Resolution Ion Microprobe (SHRIMP), have revealed that: (i) protoliths of pink granite gneiss and grey granodiorite gneiss crystallised at ca 750 Ma, coeval with breakup of western Rodinia; (ii) granulite/upper amphibolite facies metamorphism occurred at 522 ± 5 Ma, in the Early Cambrian, ~100 million years later than previous estimates and of identical age to estimates of the final amalgamation of Gondwana; and (iii) three major phases of ductile deformation occurred during or after this metamorphism and represent a progressive strain evolution from subvertical shortening (D1) to subhorizontal east‐west (D2) then north‐northwest‐south‐southeast (D3) contraction.  相似文献   
882.
The igneous events of two geosynclines within the N.S.W. portion of the Tasman Orthogeosyncline are compared, not according to the actual ages of the igneous rocks, but on the basis of their position with respect to the development of the geosyncline. Thus, Cambrian volcanic rocks in one depositional area are compared with Lower Devonian in the other, Ordovician and Silurian with Middle Devonian‐Lower Carboniferous, and Devonian with Permian. Intrusive rocks are fitted into this scheme, and their ages discussed. Such a comparison reveals an apparent igneous cycle, and speculations on the cause of such a cycle are outlined.  相似文献   
883.
Twenty‐four mineral separates from the Arunta Complex, four from the metamorphosed Heavitree Quartzite (White Range Quartzite), and one whole rock sample of metamorphosed Bitter Springs Formation, all from the western part of the White Range Nappe of the Arltunga Nappe Complex, and two samples from the autochthonous basement west of the nappe have been dated by the K‐Ar method. The samples from the basement rocks form two groups. Those in the southern or frontal part of the nappe are of Middle Proterozoic (Carpentarian) age (1660–1368 m.y.), determined on hornblende, biotite, and muscovite. In the northern or rear part of the nappe, all but one of the muscovite samples and two biotites are of Middle Silurian to Early Carboniferous age (431–345 m.y.); the remainder of the biotite dates range from 1775 to 548 m.y. (including the two samples from the autochthon), and two hornblendes gave dates of 1639 and 2132 m.y. respectively. All the muscovite samples from the Heavitree Quartzite, and the whole rock sample from the Bitter Springs Formation gave Early to Middle Carboniferous dates (358–322 m.y.). The findings support the identification of the White Range Quartzite as the metamorphosed part of the Heavitree Quartzite, which in turn supports the interpretation of the structure of the area as a large, basement‐cored fold nappe. In addition, they date the time of the Alice Springs Orogeny as pre‐Late Carboniferous, which agrees with fossil evidence from elsewhere in the area. The Alice Springs Orogeny was accompanied by widespread greenschist facies meta‐morphism that progressively metamorphosed the Heavitree Quartzite and Bitter Springs Formation, and retrogressively metamorphosed the Arunta Complex. However, the basement rocks in the southern part of the nappe escaped this metamorphism and retain a Middle Proterozoic age, thus dating the time of the Arunta Orogeny in this region as Carpentarian or older.  相似文献   
884.
Within the Pilbara Block of Western Australia, a complex of migmatite, gneissic and foliated granite near Marble Bar is intruded by a stock of younger massive granite (the Moolyella Granite) with which swarms of tin‐bearing pegmatites are associated. The age of the older granite has been determined by the Rb‐Sr method as 3,125 ± 366 m.y., and that of the Moolyella Granite as 2,670 ± 95 m.y. Initial Sr87/Sr86 ratios suggest that the older granite is close to primary crustal material, but that the Moolyella Granite consists of reworked material. It probably formed by partial remelting of the older granite.  相似文献   
885.
The Lachlan Fold Belt has the velocity‐depth structure of continental crust, with a thickness exceeding 50 km under the region of highest topography in Australia, and in the range 41–44 km under the central Fold Belt and Sydney Basin. There is no evidence of high upper crustal velocities normally associated with marginal or back‐arc basin crustal rocks. The velocities in the lower crust are consistent with an overall increase in metamorphic grade and/or mafic mineral content with depth. Continuing tectonic development throughout the region and the negligible seismicity at depths greater than 30 km indicate that the lower crust is undergoing ductile deformation.

The upper crustal velocities below the Sydney Basin are in the range 5.75–5.9 km/s to about 8 km, increasing to 6.35–6.5 km/s at about 15–17 km depth, where there is a high‐velocity (7.0 km/s) zone for about 9 km evident in results from one direction. The lower crust is characterised by a velocity gradient from about 6.7 km/s at 25 km, to 7.7 km/s at 40–42 km, and a transition to an upper mantle velocity of 8.03–8.12 km/s at 41.5–43.5 km depth.

Across the central Lachlan Fold Belt, velocities generally increase from 5.6 km/s at the surface to 6.0 km/s at 14.5 km depth, with a higher‐velocity zone (5.95 km/s) in the depth range 2.5–7.0 km. In the lower crust, velocities increase from 6.3 km/s at 16 km depth to 7.2 km/s at 40 km depth, then increase to 7.95 km/s at 43 km. A steeper gradient is evident at 26.5–28 km depth, where the velocity is about 6.6—6.8 km/s. Under part of the area an upper mantle low‐velocity zone in the depth range 50–64 km is interpreted from strong events recorded at distances greater than 320 km.

There is no substantial difference in the Moho depth across the boundary between the Sydney Basin and the Lachlan Fold Belt, consistent with the Basin overlying part of the Fold Belt. Pre‐Ordovician rocks within the crust suggest fragmented continental‐type crust existed E of the Precambrian craton and that these contribute to the thick crustal section in SE Australia.  相似文献   
886.
The structural deformation which produced more than 80 Jura‐type folds each of an axial length exceeding 1 km, in the Redbank Area, N.T., involved only a 360‐to 400‐m thick blanket of sediments. This thin skin of sediments and volcanic rocks, belonging to the Lower Proterozoic Tawallah Group, consists from bottom to top of the Wollogorang Formation, Gold Creek Volcanics, and Pungalina beds. Folding did not involve the underlying Settlement Creek Volcanics or Aquarium Formation. It is postulated that the cause of this detachment and shearing off along the bottom of the thin blanket of sediments is the infiltration of carbonated, K‐rich hydrothermal fluids under high pressure. This occurred during a period of igneous activity related to a postulated deep‐seated alkaline magma thought to be responsible for the many breccia pipes in the area. Thus the folds result from a décollement triggered by high fluid pressure, and from the accompanying gravity gliding and gravitational induced deformation of the thin skin of sediments along a gentle slope.  相似文献   
887.
The Glikson structure is an aeromagnetic and structural anomaly located in the Little Sandy Desert of Western Australia (23°59'S, 121°34′E). Shatter cones and planar microstructures in quartz grains are present in a highly deformed central region, suggesting an impact origin. Circumferential shortening folds and chaotically disposed bedding define a 19 km-diameter area of deformation. Glikson is located in the northwestern Officer Basin in otherwise nearly flat-lying sandstone, siltstone and conglomerate of the Neoproterozoic Mundadjini Formation, intruded by dolerite sills. The structure would not have been detected if not for its strong ring-shaped aeromagnetic anomaly, which has a 10 km inner diameter and a 14 km outer diameter. We interpret the circular magnetic signature as the product of truncation and folding of mafic sills into a ring syncline. The sills most likely correlate with dolerites that intrude the Boondawari Formation ~25 km to the north, for which we report a SHRIMP U?–?Pb baddeleyite and zircon age of 508?±?5 Ma, providing a precise older limit for the impact event that formed the Glikson structure.  相似文献   
888.
The Yangla copper deposit (Cu reserves: 1.2 Mt) in the Jinshajiang–Lancangjiang–Nujiang region in China is spatially associated with the Linong granitoid. Zircon U–Pb dating shows the granitoid formed at 234.1 ± 1.2 to 235.6 ± 1.2 Ma, and the KT2 ore body of the deposit yields a molybdenite Re–Os model age of 230.9 ± 3.2 Ma. The ages of mineralization and crystallization of the granitoid are identical within the measurement uncertainties, suggesting the Yangla deposit is genitically related to the Indosinian Linong granitoid.  相似文献   
889.
This paper deals with the petrology and U–Pb dating of coesite-bearing garnet–phengite schist from the Kebuerte Valley, Chinese western Tianshan. It mainly consists of porphyroblastic garnet, phengite, quartz and chlorite with minor amounts of paragonite, albite, zoisite and chloritoid. The well preserved coesite inclusions (∼100 μm) in garnet are encircled by a narrow rim of quartz. They were identified by optical microscopy and confirmed by Raman spectroscopy. Using the computer program THERMOCALC, the peak metamorphic conditions of 29 kbar and 565 °C were obtained via garnet isopleth geothermobarometry. The predicted UHP peak mineral assemblage comprises garnet + jadeite + lawsonite + carpholite + coesite + phengite. The metapelite records prograde quartz–eclogite-facies metamorphism, UHP coesite–eclogite-facies peak metamorphism, and a late greenschist-facies overprint. Phase equilibrium modeling predicts that garnet mainly grew in the mineral assemblages garnet + jadeite + lawsonite + chloritoid + glaucophane + quartz + phengite and garnet + jadeite + lawsonite + carpholite + glaucophane + quartz + phengite. SHRIMP U–Pb zircon dating of the coesite-bearing metapelite yielded the peak metamorphic age 320.4 ± 3.7 Ma. For the first time, age data of coesite-bearing UHP metapelite from the Chinese western Tianshan are presented in this paper. They are in accord with published ages obtained from eclogite from other localities in the Chinese western Tianshan and the Kyrgyz South Tianshan and therefore prove a widespread occurrence of UHP metamorphism.  相似文献   
890.
We have investigated the petrography, geochemistry, and detrital zircon U–Pb LA-ICPMS dating of sandstone from the Gorkhi Formation of the Khangai–Khentei belt in the Ulaanbaatar area, central Mongolia. These data are used to constrain the provenance and source rock composition of the accretionary complex, which is linked to subduction of the Paleo-Asian Ocean within the Central Asian Orogenic Belt during the Middle Devonian to Early Carboniferous. Field and microscopic observations of the modal composition of sandstone and constituent mineral chemistry indicate that the sandstone of the Gorkhi Formation is feldspathic arenite, enriched in saussuritized plagioclase. Geochemical data show that most of the sandstone and shale were derived from a continental margin to continental island arc setting, with plutonic rocks being the source rocks. Detrital zircon 206Pb/238U ages of two sandstones yields age peaks of 322 ± 3 and 346 ± 3 Ma. The zircon 206Pb/238U age of a quartz–pumpellyite vein that cuts sandstone has a weighted mean age of 339 ± 3 Ma. Based on these zircon ages, we infer that the depositional age of sandstone within the Gorkhi Formation ranges from 320 to 340 Ma (i.e., Early Carboniferous). The provenance and depositional age of the Gorkhi Formation suggest that the evolution of the accretionary complex was influenced by the intrusion and erosion of plutonic rocks during the Early Carboniferous. We also suggest that spatial and temporal changes in the provenance of the accretionary complex in the Khangai–Khentei belt, which developed aound the southern continental margin of the Siberian Craton in relation to island arc activity, were influenced by northward subduction of the Paleo-Asian Ocean plate.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号