首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   379篇
  免费   78篇
  国内免费   125篇
测绘学   84篇
大气科学   360篇
地球物理   13篇
地质学   47篇
海洋学   28篇
天文学   11篇
综合类   23篇
自然地理   16篇
  2024年   4篇
  2023年   12篇
  2022年   17篇
  2021年   26篇
  2020年   12篇
  2019年   28篇
  2018年   9篇
  2017年   4篇
  2016年   12篇
  2015年   20篇
  2014年   27篇
  2013年   18篇
  2012年   36篇
  2011年   35篇
  2010年   33篇
  2009年   20篇
  2008年   17篇
  2007年   17篇
  2006年   29篇
  2005年   17篇
  2004年   13篇
  2003年   12篇
  2002年   22篇
  2001年   21篇
  2000年   9篇
  1999年   23篇
  1998年   8篇
  1997年   13篇
  1996年   11篇
  1995年   12篇
  1994年   6篇
  1993年   9篇
  1992年   9篇
  1991年   4篇
  1990年   4篇
  1989年   3篇
  1988年   2篇
  1986年   1篇
  1984年   2篇
  1979年   1篇
  1960年   2篇
  1951年   1篇
  1937年   1篇
排序方式: 共有582条查询结果,搜索用时 15 毫秒
81.
飞机积冰是影响飞行安全的重要危险天气,准确的积冰诊断对民航运行与安全具有重大意义,特别是对国产大飞机适航取证具有重要作用。本文参考改进的CIP(Current Icing Potential)指数,使用垂直速度和云中液态水含量对积冰潜势诊断指数进行优化得到SCIP(Simplified Current Icing Potential)指数,该指数直接基于大气层结资料给出较为准确地飞机积冰潜势,具有命中率高、实用性强的特点。用2021年2月28日至12月31日民航航空器报告对原CIP指数和SCIP指数进行对比验证评估,发现相比于原CIP指数,SCIP指数具有更优异的ROC曲线(Receiver Operating Characteristic Curve)和TSS评分(True Skill Score)。但是对于不同程度的积冰,原CIP指数和SCIP指数均表现出较一致诊断效果,表明SCIP指数对诊断飞机积冰潜势具有重要作用,但无法判断积冰强度。根据2020年3月16日陕西区域飞机结冰个例验证表明增加垂直速度和云中液态水含量的影响对飞机积冰的描述更加细致,对提升积冰潜势诊断效果具有重要意义...  相似文献   
82.
利用NCEP再分析数据和观测数据,对2000年6月6日甘肃省人工增雨作业时的一次飞机积冰过程进行诊断分析,利用WRF模式对72个飞机积冰实例的天气过程进行了数值模拟,在此基础上结合飞机飞行速度建立了积冰强度预报模型,通过统计分析和拟合得到预报模型的参数,并利用飞机实测报告对该模型的预报效果进行了回报检验。结果表明,该模型对飞机积冰强度的预报准确率为69.44%,强度预报结果偏弱占比25%,偏强占比5.56%。  相似文献   
83.
积-层混合云是影响北京地区的重要降水云系,运用飞机探测资料结合中尺度数值模式WRF,对2014年9月23日发生在北京地区的一次积-层混合云系的垂直结构和降水机制进行了探测资料分析和数值模拟研究。通过分析云系的雷达回波演变,发现云中的对流泡没有出现爆发式增长,回波在垂直方向上增长不明显,此次过程属于积-层水平混合型云系降水。飞机探测资料分析显示,上、下午探测云系的液态水含量都不高(最大低于1 g/m3);在云系不同高度,飞机探测到的冰晶形状主要有板状、针柱状、辐枝状和不规则状,由于云中过冷水含量相对较低,聚合冰晶的数量明显多于凇附冰晶,冰晶的聚合是云中粒子增长的主要过程。对模拟云系垂直微物理结构和降水粒子的源、汇项分析得到:高层,由凝华产生的冰晶和雪晶在过冷水含量较低的环境中不断聚并、长大并下落,云系中霰的含量很低,增大的冰晶和雪晶下落至0℃层附近融化是产生地面降水的主要机制。此外,融化层附近,雨滴捕获云滴不断长大并下降至地面也是地面降水的另一个重要来源。  相似文献   
84.
2016年11月13日在北京地区上空存在持续稳定的层状云天气背景下,利用飞机开展气溶胶粒径谱、化学组成、云滴谱等参量的垂直观测,研究该个例云底气溶胶的活化能力。结果表明:探测期间北京地区为轻度污染天气,地面气溶胶浓度(0.11~3 μm)达到4600 cm-3。云层高度为800~1200 m,云底气溶胶数浓度相对于近地面大幅度降低,有效粒径显著增大(0.3~0.6 μm)。同时,近地面气溶胶中疏水性的一次有机气溶胶贡献显著,而云底气溶胶中一次有机气溶胶的贡献大幅降低,无机组分和二次有机气溶胶的贡献明显增大,造成吸湿性参数κ由0.25(地面)增大至0.32(云底)。云中气溶胶和云滴的谱分布衔接较好,且两者的数浓度之和与云底气溶胶浓度一致,可分别代表未活化和已活化的粒子。基于云底气溶胶粒径谱和吸湿性参数计算得到不同过饱和比下云凝结核的活化率,通过与云中观测结果对比,反推得到云底过饱和度约为0.048%。  相似文献   
85.
“2007.7.6”飞机颠簸事件数值模拟与成因分析   总被引:1,自引:0,他引:1  
刘峰  赵琳  田军  李银芳 《气象》2009,35(10):40-49
利用WRF模式模拟了2007年7月6日发生在菲律宾南部海域上空的一次民航飞机颠簸事件.结果表明,综合分析WRF模式计算得到的Ri和EI等预报指数,能够确定飞机颠簸发生的区域、高度和强度.飞机遭遇颠簸的区域是位于涡旋云系外围的螺旋云带的上空,飞机在飞越由重力波形成的螺旋云带时,在强烈的垂直上升和下沉气流的转换区域产生了急速的上抛和下降运动.  相似文献   
86.
山西省层状云飞机云物理观测试验结果分析   总被引:1,自引:0,他引:1  
利用山西省2008年-2010年64架次云结构的粒子测量系统(DMT)探测资料,配合地面观测和卫星资料统计分析了层状云系的宏微观特征。发现:降水性层状云低云含水量垂直方向上平均为0.03g,m^3,中云含水量垂直方向上平均为0.05g/m30对比分析降水云和非降水云系的微物理特征量,两者存在显著的差异,降水性层状云云粒子有效半径要达到10μm-14μm。对云系不同温度层的微物理特征和云中水分按不同粒子尺度的分配特征进行了对比分析,结果表明:降水性层状云在垂直方向上的微物理结构特征非常明显,也是分层的。高层主要是冰相粒子,主要是冰雪晶,随高度降低冰雪晶的尺度增大,在四个典型温度层的观测中,LWC、云粒子及降水的浓度、尺度相较有很大不同。云中水分按不同粒子尺度的分配可以看出,直径20μm、30μm的粒子含水量较高,对云中液态水含量的贡献较大,降水粒子主要由20μm、30μm的粒子转化。  相似文献   
87.
飞机探测云物理数据集的建立和应用   总被引:3,自引:3,他引:3       下载免费PDF全文
通过收集大量历史和现今的飞机探测云物理资料,对所获取的资料进行必要的质量控制和检验,并进行统一整理、加工、规范和信息化处理,形成了具有规范格式和详细说明文档的"飞机探测云物理数据集"产品.该数据集产品具有分类查询、数据导出、格式说明等功能,可以按照时间属性、地理空间属性、数据种类等不同属性对该数据集中的各类数据进行多元化使用.借助于"气象科研数据共享平台","飞机探测云物理数据集"产品已在一定范围内得到广泛应用.在此应用基础上,包括国家科技攻关项目在内的许多科研或业务项目已经取得了许多可喜的成果.  相似文献   
88.
微型无人驾驶飞机探空初步试验研究   总被引:4,自引:1,他引:4  
对具有自动导航,自动驾驶功能的微型无人驾驶飞机探空的可行性进行了初步研究。设计了水平空速归零测风方式,利用全球定位系统测风,进行了微型无人驾驶飞机探测试验。研究表明,微型无人驾驶飞机可成为一种方便,经济,灵活的探空工具。  相似文献   
89.
对飞机人工增雨天气系统和作业云系进行了统计分析 ,按照辽宁的天气特征 ,高空环流分为 4种类型 ,其中西风槽和冷涡为多见 ;地面以冷锋和蒙古气旋多见。飞机人工增雨作业的主要云系是层状云系  相似文献   
90.
利用2019年5月20日机载DMT和SPEC粒子测量系统获取的飞机云微物理探测资料,结合高空、地面、卫星云图产品等常规气象数据,分析了东北冷涡在发展成熟期的云宏微观结构特征。结果表明:飞机探测区域为冷性层积混合云,云水充沛。云粒子探头(CDP)和二维云粒子图像探头(CIP)探测到的最大粒子数浓度分别为362.10cm-3、191.08L-1,液态含水量变化范围为0~0.88g/m3;CDP粒子谱呈指数型下降,谱宽较窄;CIP粒子谱呈双峰结构。云粒子图像探测仪CPI表明,层积云上部主要为冰雪晶粒子,以冰晶的核化和凝华增长为主;中上部粒子主要为小冰晶形态,也有冰晶聚合体和枝状冰晶;中下部是过冷水和冰晶粒子的共存区,过冷水较为丰富。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号