首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2165篇
  免费   586篇
  国内免费   448篇
测绘学   419篇
大气科学   215篇
地球物理   388篇
地质学   1487篇
海洋学   355篇
天文学   23篇
综合类   221篇
自然地理   91篇
  2024年   22篇
  2023年   65篇
  2022年   107篇
  2021年   93篇
  2020年   88篇
  2019年   97篇
  2018年   74篇
  2017年   77篇
  2016年   77篇
  2015年   106篇
  2014年   193篇
  2013年   133篇
  2012年   137篇
  2011年   156篇
  2010年   150篇
  2009年   176篇
  2008年   184篇
  2007年   137篇
  2006年   110篇
  2005年   91篇
  2004年   96篇
  2003年   87篇
  2002年   67篇
  2001年   92篇
  2000年   88篇
  1999年   61篇
  1998年   69篇
  1997年   60篇
  1996年   57篇
  1995年   47篇
  1994年   36篇
  1993年   39篇
  1992年   22篇
  1991年   15篇
  1990年   35篇
  1989年   9篇
  1988年   3篇
  1987年   12篇
  1986年   2篇
  1985年   5篇
  1984年   2篇
  1983年   3篇
  1982年   2篇
  1981年   3篇
  1980年   2篇
  1960年   1篇
  1958年   1篇
  1950年   2篇
  1949年   2篇
  1941年   1篇
排序方式: 共有3199条查询结果,搜索用时 15 毫秒
121.
为探究2021年8月8日遵义市区域性暴雨天气过程中芙蓉江上游局地特大暴雨成因及地形的影响作用,该文利用探空资料、地面自动站观测资料、多普勒雷达观测资料及ERA5再分析资料,采用常规诊断方法对此次过程进行了详细分析。结果表明:(1)受地形影响,强降雨集中发生在芙蓉江上游峡谷内,200 mm以上的降雨发生在峡谷左侧山脉上,100 mm以上的降雨发生在峡谷底部。(2)副高控制及南北两支水汽输送在遵义上空汇聚,形成高温高湿的大气环境,低层及地面锋区南压触发对流,夜间副高增强使低层系统长时间维持,导致区域性暴雨产生。(3)中心强度在55~60 dBz的低质心降水回波带长时间维持少动是造成本次区域性暴雨天气的直接原因。峡谷左侧山脉上的回波单体发展旺盛,回波顶高在15 km以上,具有悬垂结构及小尺度辐合区。能量耗尽后峡谷内中心强度在55 dBz的低质心降水回波发展导致峡谷底部出现大暴雨天气。(4)大气不稳定性最强时,系统长时间维持导致南北两股气流汇入峡谷中产生狭管效应,峡谷深处出现小尺度气旋性环流使对流增强,由此引发峡谷山脉上特大暴雨。不稳定能量耗散后,冷空气越过山脉叠加在峡谷底部暖空气之上,使大气...  相似文献   
122.
【目的】研究Merantia、Malaks、Megi、Chaba4个连续台风引起上层海洋的响应。【方法】基于遥感和再分析数据,分析台风前海洋环境、台风做功(W)、强迫时间(tf)、降水等要素分布特征,探讨上层海洋稳定度、上升流、湍流混合动力机制如何影响中尺度涡区域的海表温度(SST)、浮游植物繁殖程度,引入动力学参数S判断海洋内部上升流和混合重要性。【结果和结论】冷涡(CE)区域海洋表层降温(SSC)(3.5℃)和叶绿素a(Chl-a)质量浓度(0.5mg/m3)对于台风响应比暖涡(AE)区更为剧烈,与其内部热力学结构有关,出现在Megi过境CE区,主要原因是海洋本身CE特征、强上升流(EPV)=2.5×10-4 m/s,S<1,台风向海洋输入巨大的能量(W>80 kJ)引起剧烈的混合夹卷、强降雨,导致海水迅速重新层化、逐渐加强的非线性CE有更强的封闭性,这些机制的共同作用将底层(营养盐跃层100m以下)富含营养盐的冷水输送到上层;Malaks过境CE(124.9°E,22.3°N)缺乏强上升流(EPV=5×10-5 m/s),以湍流混合为主(S>1);Merantia使CE区域表现下沉流(EPV<0),SSC主要是湍流混合的作用(W>25kJ),Chl-a浓度增长到0.27mg/m3。AE热力学结构比较稳定,连续台风导致SSC<2℃,Chl-a增加仅200%,Merantia、Malaks过境AE(125.1°E,20.6°N)分别以强上升流(S<1)和湍流混合(S>1)为主,混合层厚度约80 m,同时AE周围无强障碍带,易与周围水体交换,Chl-a浓度微弱增加。  相似文献   
123.
按照目前的国际规范, 高精度GNSS (Global Navigation Satellite System)轨道产品一般以天为周期进行发布, 提供给用户使用. 连续使用多天的产品存在不同天间的跳变问题. 利用德国地学研究中心(GFZ)、欧洲定轨中心(COD)、欧空局(ESA)、美国喷气试验室(JPL)以及上海天文台(SHA)共5个GNSS分析中心2013---2017年的轨道产品, 分析了轨道跳变的特性. 计算结果表明: GFZ、COD、ESA、SHA和JPL的3维轨道跳变平均分别为7.79cm、1.51cm、7.77cm、11.75cm和2.51cm. 轨道跳变序列的周期特性分析表明: 序列存在90d、120d、340d左右的显著周期项, 对应于海潮对地球自转的影响, 其振幅为数毫米至1cm左右. 表明精密轨道确定需要进一步精化该项模型; GPS的跳变序列还存在与卫星星座相关的175d和352d左右的交点年显著周期项. 此外, 针对COD产品外推轨道的分析, 验证了地球反照辐射压和太阳光压模型等动力学模型对轨道的差异.  相似文献   
124.
面域拓扑图是一种利用区域面积大小定量表达区域属性信息的可视化方法。由于其区域面积本身已经表示某一变量,因此这更有利于双/多变量的制图表达。针对目前基于面域拓扑图的双/多变量表达方法中存在的难以表达相邻区域之间基本状况和不利于不同地理现象的空间分布规律及差异表达的问题,本文提出一种面向双/多变量的连续面域拓扑图可视化方法。首先通过格网密度补偿和积分步长逐步试探的方法对基于扩散模型的连续面域拓扑图生成算法进行部分优化,完成基本变量的表达,然后分别通过空间内插和符号扩展完成第2和第3变量在连续面域拓扑图中的表达。最后以慕尼黑市人口密度和银行/ATM分布(双变量)数据以及奥格斯堡市人口密度数据、幼儿园分布以及规模数据(多变量)为试验数据进行可视化,并通过实证分析验证了该方法的有效性和优越性。  相似文献   
125.
126.
提出了一种集群环境下的复合最小不连续相位解缠算法。首先主线程根据计算资源数将原始缠绕相位分为规则小块,并将未解缠相位块发送至空闲计算节点进行解缠。单块缠绕相位图解缠时,先计算相位质量图,并将缠绕相位分为高低质量区域,然后采用质量引导与最小不连续相结合的复合相位解缠策略进行解缠,最后将解缠结果和区域分割结果发送回主线程。完成所有分块缠绕相位解缠后,主线程在不同解缠相位块边界及其与边界相邻的低质量区域进行最小不连续优化来获取最终的解缠相位。通过集群环境下的并行相位解缠试验,验证了所提算法的正确性和高效性。  相似文献   
127.
128.
地埋管地源热泵工程在发挥供暖、制冷等作用的同时,埋管区地层温度场也发生了复杂的结构性变化,陕西地区对地下岩土体温度场影响机制研究不够深入,对热泵工程可持续利用的调控带来困难。本文依托陕西省浅层地热能开发利用示范研究基地,分析地源热泵系统稳定运行2 a及疫情影响下停止运行1a地埋管换热区的温度监测数据,研究地埋管换热区地层温度的垂向深度及平面展布特征。结果显示:系统稳定运行2 a,换热区各区域地温在时间尺度上受地埋管换热器吸排热量的影响呈波状变化,并且相较于环境温度变化表现出不同的时滞性,距离换热器越远时滞性越强;在地埋管长度以内,随着深度增加,温度波动减小;在水平向,距离地埋管越远温度波动越小,单根换热器对地温的影响半径为3.2~3.9 m;系统稳定运行2 a地埋管换热器吸排热量基本平衡,未造成地质体冷热堆积,停止运行1 a,由于吸排热量不均衡造成了地质体存在冷堆积,调控运行热泵系统可使冷堆积现象消失。该文旨在系统地分析关中盆地地源热泵工程对地温场的影响机制特征,为地源热泵平稳运行提供基础数据支持,为区域地热资源的科学、长期开发提供理论依据。  相似文献   
129.
由于地理位置的原因,一些台站收不到雷达资料,在进行人工影响天气作业时对天气系统的判断存在一定盲目性,与天气雷达比较,雷电定位系统具有覆盖范围大、维持费用低及可连续长时间运行的优点。如果能有效地利用雷电监测数据对人工影响天气作业进行指导,将提高人工影响天气的作业效果。  相似文献   
130.
近年来,我国矿业权交易的市场化获得了蓬勃发展。它有利于充分发挥市场机制提高资源配置效率,实现矿产资源国家所有权益,促进经济可持续发展和资源永续利用。但由于我国矿业权市场化起步较晚,现行政策法规还很不健全。笔者结合多年的矿管工作实践,就矿业权市场化建设与发展谈一谈认识。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号