首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   286篇
  免费   59篇
  国内免费   138篇
测绘学   5篇
大气科学   2篇
地球物理   28篇
地质学   277篇
海洋学   160篇
综合类   4篇
自然地理   7篇
  2024年   4篇
  2023年   11篇
  2022年   11篇
  2021年   16篇
  2020年   10篇
  2019年   10篇
  2018年   8篇
  2017年   15篇
  2016年   7篇
  2015年   8篇
  2014年   15篇
  2013年   15篇
  2012年   11篇
  2011年   15篇
  2010年   15篇
  2009年   9篇
  2008年   9篇
  2007年   10篇
  2006年   16篇
  2005年   4篇
  2004年   10篇
  2003年   16篇
  2002年   18篇
  2001年   16篇
  2000年   15篇
  1999年   26篇
  1998年   19篇
  1997年   28篇
  1996年   18篇
  1995年   20篇
  1994年   17篇
  1993年   11篇
  1992年   16篇
  1991年   7篇
  1990年   3篇
  1989年   11篇
  1988年   3篇
  1987年   3篇
  1986年   1篇
  1983年   1篇
  1979年   1篇
  1950年   2篇
  1946年   1篇
  1943年   1篇
排序方式: 共有483条查询结果,搜索用时 468 毫秒
71.
现代大洋不同热液区地球化学特征及微生物成矿   总被引:1,自引:0,他引:1  
生物圈将地球其他圈层有机地联系在一起。已有研究发现,地质与生物密切相关,地质过程为生物提供生活场所、能量和营养物质,生物活动改变地质过程,如微生物改变洋壳和海洋的化学组成,生物地球化学循环改变元素的迁移。研究发现,陆地上已发现的一些矿床,是生物成矿的或与生物作用有关。微生物在现代大洋中的多金属结核和结壳的形成起到重要作用。对大  相似文献   
72.
陈伟 《云南地质》2011,30(3):326-328
铁矿床由基底岩石中黄铁矿、菱铁矿在近地表经风化淋滤后,搬运沉积形成。属风化残积型褐铁矿。  相似文献   
73.
蓟县中元古界下马岭组地层中菱铁矿的发现及其意义   总被引:1,自引:0,他引:1  
蓟县剖面中元古界下马岭组地层下部黑色岩系中发现丰富的铁质结核,经X射线粉晶衍射、显微镜下观察、能谱分析等方法鉴定,确定铁质结核主要由菱铁矿构成.这些菱铁矿可能具有经济意义.另外,野外和室内研究表明,无论是铁质结核还是黑色岩系本身,都匮乏硫化物.这一发现说明中元古代下马岭期的燕辽海盆水体贫氧、富铁、贫硫,不是硫化的海洋.  相似文献   
74.
大洋多金属结核同位素地球化学研究   总被引:1,自引:0,他引:1  
刘淑琴  宋鹤彬 《地球学报》2000,21(3):273-281
本文对DY85-1航次采自东太平洋海盆“CC”区不同地貌区、不同类型的大洋多金属结核进行了O、C、H、Si等同位素综合研究。结果表明,O同位素变化能反映结核的生成环境、生长速率、物质来源及成矿机理;Si同位素组成特征能帮助推测结核核心物质的来源;C同位素的研究表明,多金属结核成矿作用是在古海洋水变冷的总趋势下进行的;δ13C、δ18O和δD的规律变化,反映了海洋水变冷的周期性和渐变性。  相似文献   
75.
雷加锦  李任伟  曹杰 《地质科学》2000,35(3):277-287
通过野外观察、室内化学分析、矿物学分析、硫同位素分析、光学显微镜和扫描电镜观察,发现磷结核内所观察到的许多现象均与微生物的活动有关,微生物是使磷淀积的重要营力,这为磷结核的生物成矿作用提供了有力的证据.沉积物孔隙水物理化学条件的变化直接影响着磷结核的生长过程.  相似文献   
76.
深拖系统光学图像多金属结核粒径和丰度的计算   总被引:2,自引:0,他引:2  
针对Simrad深拖系统和上海交通大学与美国DOE联合研制的深拖系统,开发光学图像多金属结核覆盖率、粒径和丰度计算软件.提出了深拖系统光学图像拖体高度校正处理、粒径计算方法,分析了我国太平洋多金属结核矿区东、西区结核丰度与覆盖率和粒径的相关性,建立了深拖系统光学图像多金属结核丰度计算的数学模式.  相似文献   
77.
黄土碳酸盐碳同位素广泛应用于第四纪气候环境变化的研究中,以往研究中多利用钙结核、次生碳酸盐或成壤碳酸盐,认为其反映了C4植物的丰度。黄土高原碳酸盐碳同位素表现为黄土层高,古土壤层中低,即黄土层中C4植物丰度高于古土壤层。然而,这样的结果和黄土有机碳同位素得到的结果矛盾,有机碳同位素的结果表明温度对C4植物的分布起到了决定性作用。由于有机碳同位素对植物类型的反映更为直接而可靠,因此碳酸盐碳同位素反映C4植物丰度存在疑问。对黄土高原黄土碳酸盐碳同位素的系统概括后认为,第四纪期间黄土碳酸盐碳同位素与C4植物有直接联系,但C4植物丰度不是唯一决定性的因素,碳酸盐碳同位素的指示意义存在复杂性。在黄土高原地区,植被发育程度、与大气CO2交换程度、植被本身的碳同位素值的变化以及原生碳酸盐的影响等因素都会对碳酸盐碳同位素产生影响。由黄土碳酸盐碳同位素的讨论可延伸到不同土壤碳酸盐碳同位素揭示的环境指示意义,不同的土壤环境,其气候条件、植被类型及发育程度...  相似文献   
78.
钱江初 《沉积学报》1997,15(A12):96-101
根据对取自东北太平洋“克拉里昂”和“克里帕顿”两断裂带之间的430号柱状岩芯的多学科的综合分析结果,发现该岩芯中至少存在四个比较明显的沉积间断。这四个沉积间断分别处于岩芯的表层,28cm,215cm,和320cm处,其年代分别为全新世,中更新世,上上新世和中中新世-上上新世。南极底层流的发育则是造成上述沉积间断的主要原因。  相似文献   
79.
本文分析了中西太平洋海山富钴结壳及其各主要层圈(外层、疏松层、亮煤层)和玄武岩基岩的铂族元素(PGE)和Au 含量以及 Os 同位素组成,发现富钴结壳中 PGE 和 Au 含量均较高,且变化很大,∑PGE 为(70.09~629.26)×10~(-9),平均289.48×10~(-9),Au 为(0.60~26900)×10~(-9).具三层结构的富钴结壳中,疏松层(∑PGE=(339.37~545.82)×10~(-9))和亮煤层(∑PGE=(280.09~629.26)×10~(-9))的∑PGE 明显高于外层((70.09~133.27)×10~(-9).单层结壳的∑PGE 为(83.94~479.75)×10~(-9),Au 含量普遍高于具三层结构者.结壳的∑PGE 和 Au 含量远高于太平洋多金属结核(分别为(101.57~155.83)×10~(-9)和(1~4)×10~(-9)。沉积深度和海水氧逸度的不同是导致结壳和结核中 PGE 含量明显差异的主导因素。富钴结壳∑PGE 和 Pt 与 Mn(%)之间呈明显的正相关关系,而与 Fe(%)具负相关性,与多金属结核正好相反,显示结壳中的 PGE主要赋存在水羟锰矿(δ-MnO_2)等锰矿物相中,与针铁矿(FeOOH·nH_2O)等铁矿物相关系不大,而结核中的 PGE 主要赋存在铁矿物相中。PGE 球粒陨石标准化曲线和各项参数显示富钴结壳的 PGE 和 Au 主要来自海底玄武岩的蚀变释放,部分来自铁陨石微粒等地外物质,而与海底热水活动无关。计算显示西太平洋结壳距今42.5Ma 左右开始生长,生长过程中分别在8.0Ma 和21.8Ma 处出现间断,相应形成外层、疏松层和亮煤层,其各自沉积速率为2.64mm/Ma,1.45mm/Ma 和1.06mm/Ma,相应海水的~(187)Os/~(188)Os 分别为0.948~0.953,0.599~0.673和0.425~0.536,显示外层含有较多的大陆风化尘,而疏松层和亮煤层的沉积物主要来自海底洋壳蚀变和陨石碎屑或宇宙尘等地外物质。  相似文献   
80.
东太平洋CC区多金属结核物质来源和分布规律   总被引:5,自引:0,他引:5  
对东太平洋CC区(Clarion-Clipperton Zone)多金属结核丰度、品位、多波束地形测量、深拖光学覆盖率探测、地震勘探等一系列调查资料综合研究表明:①东区和西区结核在其化学成分和形态上有差异,但是聚类分析结果表明不能按区域断然分开;②因子分析得出东、西两区结核4种主因子是Mn组元素Mn、Cu、Ni、Zn,Fe组元素Fe、Co、Ti、Sr,岩源组元素Si、Al、K,生物元素Ca、P;③西区结核成矿物质主要来源于上覆海水中金属元素的化学沉淀,火山成矿作用使结核富集和丰度增加,趋势面和人工神经网络分析表明结核主要分布在海底坡度≤5°地区,该地区的结核量占总结核量的89.62%,坡度>5°地区结核量占10.38%;④东区结核丰度、覆盖率、地形三者变化一致,重大相变距离为10~15km,来自地幔成矿物质通过玄武质洋壳裂隙和断层,为多金属结核的形成和生长提供了丰富的物质来源,地球深部地质作用过程如基底岩浆房活动可能对结核分布产生重要影响;⑤东太平洋CC区多金属结核矿带的形成应归于海底板块扩张活动的一种资源效应和经后期表生地质作用改造的结果。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号