首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   670篇
  免费   88篇
  国内免费   110篇
测绘学   50篇
大气科学   367篇
地球物理   17篇
地质学   264篇
海洋学   23篇
综合类   27篇
自然地理   120篇
  2024年   9篇
  2023年   27篇
  2022年   32篇
  2021年   43篇
  2020年   27篇
  2019年   28篇
  2018年   28篇
  2017年   30篇
  2016年   35篇
  2015年   18篇
  2014年   47篇
  2013年   38篇
  2012年   45篇
  2011年   36篇
  2010年   46篇
  2009年   41篇
  2008年   27篇
  2007年   36篇
  2006年   20篇
  2005年   34篇
  2004年   26篇
  2003年   15篇
  2002年   13篇
  2001年   31篇
  2000年   18篇
  1999年   14篇
  1998年   19篇
  1997年   11篇
  1996年   9篇
  1995年   12篇
  1994年   3篇
  1993年   11篇
  1992年   14篇
  1991年   11篇
  1990年   5篇
  1989年   3篇
  1988年   5篇
  1936年   1篇
排序方式: 共有868条查询结果,搜索用时 0 毫秒
311.
伯玥  李小兰  王澄海 《冰川冻土》2014,36(6):1353-1362
利用青藏高原1980-2009年SMMR、SSM/I和AMSR-E被动微波遥感反演得到的逐日积雪深度资料, 应用EOF方法分析了近30 a青藏高原地区冬春季积雪年际变化异常的时空变化. 结果表明: 青藏高原冬春季积雪年际异常敏感区随季节有着显著变化, 并具有多尺度性. 其在大尺度上最主要的空间特征是从秋末(10-12月)到隆冬(12-翌年2月)位于青藏高原腹地和东南缘的河谷; 后冬和前春年际异常变化的敏感区显著变小, 整个青藏高原地区的积雪稳定少变; 而春季(3-5月), 随着青藏高原气温的回升, 敏感区出现在青藏高原东部. 青藏高原冬春季积雪年际变化在局地尺度上存在着季节变化, 表现为青藏高原积雪年际变化的异常与年际变化趋势相反的特征, 以及积雪年际变化东西反向异常随季节的演变. 青藏高原冬春季积雪年际变化的异常敏感区在空间范围上的变化, 反映了冬春季积雪在季节尺度上受冬季风和南来的暖湿气流之间相互消长和进退影响的特征. 青藏高原冬春季积雪具有显著的年代际变化, 在20世纪80年代处于多雪期, 80年代后期进入一个积雪较少期. 秋末至隆冬(10-翌年2月)的积雪在20世纪90年代后期出现明显转折, 进入多雪期, 2000年后又进入一个少雪期.  相似文献   
312.
利用BATS-SAST模式对加拿大Sk-OJP森林站2001/2002,2002/2003,2003/2004年度及Sk_HarvestJP空旷站2003/2004年度4个积雪季节进行模拟.针对Sk-OJP森林站积雪深度模拟偏小的不足,在长波辐射及降水量的计算方案中考虑透过冠层的部分;考虑由雨、雪密度不同引起冠层上单位面积截留量的变化以及风速和冠层温度对冠层积雪卸载过程的影响,对冠层截留模型进行了改进.针对Sk_HarvestJP空旷站积雪深度模拟偏大的不足,对地表积雪覆盖率的计算方案进行了调整.结果表明:模式能够对2种不同下垫面积雪变化过程做出合理描述;调整后的模式对Sk_OJP森林站积雪深度模拟增加;新冠层截留模型通过改变冠层截留量来影响冠层下积雪深度的变化,积雪深度的模拟在融化阶段改进最为显著;调整后的模式对Sk_HarvestJP空旷站积雪覆盖率模拟变小,由于积雪覆盖率与地表反照率之间存在着正反馈关系,地面接收的太阳辐射增大,积雪深度的模拟变小.  相似文献   
313.
以青藏高原多年冻土区高寒沼泽化草甸为研究对象,采用雪栅栏诱导方式模拟积雪厚度增加,结合植物地上、地下根系以及土壤养分变化,分析了高寒沼泽化草甸对积雪厚度增加的响应。结果表明:积雪厚度增加后,0~20 cm浅层土壤温度和水分含量增加;植物群落高度和土壤表层0~10 cm根系生物量显著增加,植物群落组成和地上生物量没有变化;地下0~20 cm土壤碳(C)、氮(N)、磷(P)总储量降低,根系中C、N、P储量增加;土壤表层0~10 cm总N∶P比显著增加,但是有效磷含量在0~10 cm和10~20 cm土层均显著增加。可见,积雪厚度增加并不影响沼泽化草甸植物群落的组成和地上生物量,仅增加植被高度;增加土壤表层总N∶P比意味着积雪厚度增加可能会减轻沼泽化草甸土壤中氮限制,从而减缓沼泽化草甸的氮匮乏状况。结论可为高寒生态系统响应积雪变化研究提供样地尺度的观测数据,并为冰冻圈生态系统应对未来气候变化的模型估算提供数据支撑。  相似文献   
314.
为了解北疆积雪中砷(As)和汞(Hg)的空间分布特征及来源,基于2018年1月在北疆地区58个采样点采集的积雪样品,采用原子荧光光谱法测定积雪中溶解性砷和汞的含量,用反距离加权插值法分析空间分布特征,并利用后向轨迹模型探讨了其来源.结果表明:积雪中溶解性砷和汞的浓度分别在0.21~2.69μg?L-1和5.32~64....  相似文献   
315.
基于CMIP6气候模式的新疆积雪深度时空格局研究   总被引:1,自引:0,他引:1  
张庆杰  陶辉  苏布达  窦挺峰  姜彤 《冰川冻土》2021,43(5):1435-1445
积雪深度的变化对地表水热平衡起着至关重要的作用。选用了国际耦合模式比较计划第六阶段(CMIP6)中目前情景比较齐全的五个全球气候模式,通过对比新疆地区1979—2014年积雪深度长时间序列数据集,评估了气候模式在新疆地区模拟积雪深度的模拟能力,接着预估了未来不同SSPs-RCPs情景下新疆地区在2021—2040年(近期)、2041—2060年(中期)、2081—2100年(末期)相对于基准期(1995—2014年)的积雪深度变化。气温和降水对积雪深度变化有着重要的影响,因此还分析了新疆地区到21世纪末期气温和降水的变化趋势。结果表明:订正后的气候模式模拟的积雪深度数据与观测数据的相关系数均达到0.8以上,其中1月至3月与观测数据的结果更为吻合。气候模式基本上能够反映积雪深度年内变化的基本特征,气候模式模拟的积雪深度空间分布和观测数据具有相似的特征。气温和降水在未来不同情景下均会波动上升,其中气温的增幅相对比较明显,达0.43 ℃·(10a)-1,而降水的增幅为0.63 mm·(10a)-1,新疆未来的气候总体上呈现出变暖变湿的趋势。新疆地区的平均积雪深度在未来不同时期相对基准期均呈增加的趋势。SSP1-1.9情景下,21世纪近期、中期和末期北部大部分地区的积雪深度将会有所增加;SSP1-2.6情景下,北部阿尔泰山地区的积雪深度在21世纪近期有所减小,但中期和末期将会有所增加;SSP2-4.5情景下,21世纪不同时期东部地区的积雪深度将会有所增加,北部和中部大部分地区在不同时期积雪深度将会变小;SSP3-7.0情景下,21世纪不同时期北部和西南地区的积雪深度将会普遍变小,东部地区的积雪深度将普遍增加;SSP4-3.4和SSP4-6.0情景下,21世纪不同时期西南昆仑山地区的积雪深度将会普遍变小,东部地区的积雪深度将普遍增加;SSP5-8.5情景下,北部阿尔泰山地区和东部地区的积雪深度将普遍增加。  相似文献   
316.
新疆北部地区积雪深度变化特征及未来50a的预估   总被引:3,自引:4,他引:3  
分析比较参加CMIP3计划的全球气候模式,在20C3M下各模式1961-1999年平均积雪深度和观测资料比较的基础上,检验了模式对积雪深度的模拟能力.在此基础上,选用INM-CM3.0和CGCM-T47_1模式对北疆地区未来50 a的积雪变化进行了预估.由于受GCM的空间分辨率和新疆北部地区地形、盆地沙漠下垫面、水汽来源和干旱气候环境的影响,CMIP3模式的GCM在新疆北部地区的模拟能力有限.通过相关系数和均方差误差的双重检验,选取了在新疆地区模拟能力较好的INM-CM3.0和CGCM-T47_1模式的模拟结果对新疆地区未来的积雪变化进行了预测.结果表明,在A1B、B1情景下,2002-2050年,总体上新疆北部地区的积雪深度均呈减少趋势;A2情景下,INM-CM3.0、CGCM-T47-1模式在准葛尔盆地地区积雪变化的模拟结果存在差异,但未来40 a新疆地区除天山附近外,积雪深度变化呈减少趋势.  相似文献   
317.
1999—2008年中国地区雪密度的时空分布及其影响特征   总被引:1,自引:2,他引:1  
利用1999—2008年地面积雪观测资料,对全国范围内的雪密度时空分布特征进行分析.结果表明,西北和东北是我国主要的积雪区,从10月到翌年4月基本都有雪存在.全国雪密度每月的最高值从10月份开始到1月份一直南移,从1月份到4月份不断北移.最大密度发生在1月份江南地区的湖南和江西的交界处.江南地区积雪持续时间短,变化明显,属于瞬时性积雪.东北和新疆地区的雪密度也相对较高,积雪持续时间长,雪密度变化相对平稳,大部分属于季节性积雪.在东北和西北地区选取9个站点进行雪密度的变化研究,可以看出:从11月中旬到3月上旬是雪密度稳定期,10月到11月上旬和3月中旬到4月是雪密度非稳定期.对西北和东北的降水、气温、雪深和雪密度做相关分析,表明:雪深是西北和东北地区雪密度的主要贡献因子.  相似文献   
318.
为定量描述额尔齐斯河流域积雪的消融过程,建立了利用基于能量平衡的积雪模型,对流域内库威积雪站2014年1月4日-3月28日积雪的积累和消融过程进行了模拟.结果表明:模型能够很好的模拟出融雪期净辐射能量的变化过程,对雪水当量的模拟结果也非常好,雪水当量的观测值和模拟值之间的Nash系数达到了0.989.在积雪的积累期,雪表的净辐射、感热、潜热通量的绝对值以及地表热通量明显低于积雪的消融期.在积累期,感热和潜热通量以及土壤热通量受到雪层厚度的影响.当雪水当量小于10 mm时,感热和潜热通量的绝对值偏高,土壤热通量的波动性也偏大.在积累期积雪的物质损失全部为升华损失,升华量为2.74 mm;在消融期,积雪的融化量为66.26 mm,升华量为2.04 mm.净辐射对积雪物质损失的贡献达到了83.1%,湍流通量对积雪物质损失的贡献达到16.9%.由于在融化期土壤热通量为正值,因此土壤热通量对融雪没有贡献.  相似文献   
319.
山地温冰川中的气候环境记录研究   总被引:8,自引:0,他引:8  
何元庆 Thea.  WH 《冰川冻土》1999,21(3):257-263
以北欧Austre Okstinbreen冰川为例,概括介绍了海洋型气候区温冰川内气候环境信息的主要特征。山地温冰川积雪中的环境记录,如氧同位素,阴阳离子含量的变化虽然受到了冰雪中的融水渗透的干扰,但仍可作为短期局部气候环境变化的理想指示器。通过与实测的气象气候资料对比,积雪中化学分析结果表明了若干重要特征:积累区雪层剖面中的氧同位素变化,较好地反映了本地区的气候变化特别是降水时的温度递变细节以及  相似文献   
320.
近百年来冷圈波动   总被引:2,自引:8,他引:2  
本世纪CO_2的增温导致了冷圈波动。中纬度山地冰川的普遍退缩与加速消融引起了海面持续上升。格陵兰冰盖目前尚未处于显著的负平衡状态,边缘区在变薄,中心区在增厚。南极大陆冰盖还在增长,但基底可能发生退缩。北极海冰在1935—1960年期间退缩了10%,南极海冰面积在1973—1980年间减少了2.5×10~6km~2。大陆积雪的变化主要表现在中纬度地区,并呈现出区域性差异。而高纬度地区,大陆冰盖的降雪量有增加趋势。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号